Spin Channels in Functionalized Graphene Nanoribbons

We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects, and vacancies. We find that the edge metallic states are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2009-10, Vol.9 (10), p.3425-3429
Hauptverfasser: Cantele, Giovanni, Lee, Young-Su, Ninno, Domenico, Marzari, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3429
container_issue 10
container_start_page 3425
container_title Nano letters
container_volume 9
creator Cantele, Giovanni
Lee, Young-Su
Ninno, Domenico
Marzari, Nicola
description We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects, and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or ion or electron beams, resulting in devices that can exhibit spin conductance polarization close to unity.
doi_str_mv 10.1021/nl901557x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734086301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734086301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-4101bb9f6c2a3b6358dbb97a1d1e69df568418d3ce0e03d4ee049a9a93ae8ab33</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK0e_AOSi4iH6mz2I9mjFFuFogf1HCabCU1JN3G3AfXXG2loLzKHeQce3oGHsUsOdxxifu9qA1yp5OuIjbkSMNXGxMf7nMoROwthDQBGKDhlI24SwQ1Px0y-tZWLZit0juoQ9XneObutGod19UNFtPDYrshR9IKu8VWeNy6cs5MS60AXw56wj_nj--xpunxdPM8ellOUUm2nkgPPc1NqG6PItVBp0Z8J8oKTNkWpdCp5WghLQCAKSQTSYD8CKcVciAm72fW2vvnsKGyzTRUs1TU6arqQJUJCqgXwnrzdkdY3IXgqs9ZXG_TfGYfsz1G2d9SzV0Nrl2-oOJCDlB64HgAMFuvSo7NV2HNxDNqoRB84tCFbN53vnYV_Hv4CROd54g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734086301</pqid></control><display><type>article</type><title>Spin Channels in Functionalized Graphene Nanoribbons</title><source>ACS Publications</source><creator>Cantele, Giovanni ; Lee, Young-Su ; Ninno, Domenico ; Marzari, Nicola</creator><creatorcontrib>Cantele, Giovanni ; Lee, Young-Su ; Ninno, Domenico ; Marzari, Nicola</creatorcontrib><description>We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects, and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or ion or electron beams, resulting in devices that can exhibit spin conductance polarization close to unity.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl901557x</identifier><identifier>PMID: 19731918</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron states ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Materials science ; Methods of electronic structure calculations ; Physics ; Specific materials</subject><ispartof>Nano letters, 2009-10, Vol.9 (10), p.3425-3429</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-4101bb9f6c2a3b6358dbb97a1d1e69df568418d3ce0e03d4ee049a9a93ae8ab33</citedby><cites>FETCH-LOGICAL-a445t-4101bb9f6c2a3b6358dbb97a1d1e69df568418d3ce0e03d4ee049a9a93ae8ab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl901557x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl901557x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22069576$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19731918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantele, Giovanni</creatorcontrib><creatorcontrib>Lee, Young-Su</creatorcontrib><creatorcontrib>Ninno, Domenico</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><title>Spin Channels in Functionalized Graphene Nanoribbons</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects, and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or ion or electron beams, resulting in devices that can exhibit spin conductance polarization close to unity.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Materials science</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Specific materials</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbK0e_AOSi4iH6mz2I9mjFFuFogf1HCabCU1JN3G3AfXXG2loLzKHeQce3oGHsUsOdxxifu9qA1yp5OuIjbkSMNXGxMf7nMoROwthDQBGKDhlI24SwQ1Px0y-tZWLZit0juoQ9XneObutGod19UNFtPDYrshR9IKu8VWeNy6cs5MS60AXw56wj_nj--xpunxdPM8ellOUUm2nkgPPc1NqG6PItVBp0Z8J8oKTNkWpdCp5WghLQCAKSQTSYD8CKcVciAm72fW2vvnsKGyzTRUs1TU6arqQJUJCqgXwnrzdkdY3IXgqs9ZXG_TfGYfsz1G2d9SzV0Nrl2-oOJCDlB64HgAMFuvSo7NV2HNxDNqoRB84tCFbN53vnYV_Hv4CROd54g</recordid><startdate>20091014</startdate><enddate>20091014</enddate><creator>Cantele, Giovanni</creator><creator>Lee, Young-Su</creator><creator>Ninno, Domenico</creator><creator>Marzari, Nicola</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091014</creationdate><title>Spin Channels in Functionalized Graphene Nanoribbons</title><author>Cantele, Giovanni ; Lee, Young-Su ; Ninno, Domenico ; Marzari, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-4101bb9f6c2a3b6358dbb97a1d1e69df568418d3ce0e03d4ee049a9a93ae8ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Materials science</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantele, Giovanni</creatorcontrib><creatorcontrib>Lee, Young-Su</creatorcontrib><creatorcontrib>Ninno, Domenico</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cantele, Giovanni</au><au>Lee, Young-Su</au><au>Ninno, Domenico</au><au>Marzari, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Channels in Functionalized Graphene Nanoribbons</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2009-10-14</date><risdate>2009</risdate><volume>9</volume><issue>10</issue><spage>3425</spage><epage>3429</epage><pages>3425-3429</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects, and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or ion or electron beams, resulting in devices that can exhibit spin conductance polarization close to unity.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19731918</pmid><doi>10.1021/nl901557x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2009-10, Vol.9 (10), p.3425-3429
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_734086301
source ACS Publications
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electron states
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Materials science
Methods of electronic structure calculations
Physics
Specific materials
title Spin Channels in Functionalized Graphene Nanoribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Channels%20in%20Functionalized%20Graphene%20Nanoribbons&rft.jtitle=Nano%20letters&rft.au=Cantele,%20Giovanni&rft.date=2009-10-14&rft.volume=9&rft.issue=10&rft.spage=3425&rft.epage=3429&rft.pages=3425-3429&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl901557x&rft_dat=%3Cproquest_cross%3E734086301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734086301&rft_id=info:pmid/19731918&rfr_iscdi=true