Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?
Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still un...
Gespeichert in:
Veröffentlicht in: | Journal of molecular and cellular cardiology 2009-11, Vol.47 (5), p.656-663 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 5 |
container_start_page | 656 |
container_title | Journal of molecular and cellular cardiology |
container_volume | 47 |
creator | Nagy, Norbert Szűts, Viktória Horváth, Zoltán Seprényi, György Farkas, Attila S Acsai, Károly Prorok, János Bitay, Miklós Kun, Attila Pataricza, János Papp, Julius Gy Nánási, Péter P Varró, András Tóth, András |
description | Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization. |
doi_str_mv | 10.1016/j.yjmcc.2009.07.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734083934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022282809003113</els_id><sourcerecordid>734083934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzqLxCkb566rST9kT6oLOv6AQse1HNMV6oxbXdnTNIL46834wwIXjwFiuetIs_L2DMOFQfevpyqw7QgVgKgr6CrgPcP2I5D35SqUfVDtgMQohRKqAt2GeMEGaylfMwueN9KIaTasW9vPcUiLmaeS_Sr3TCZFalAM6PbltJgcvcmkS32PpkY86zA72ZdaS4yn4IbtkRF8jkRrDNYBNr72QT3yyTn1zdP2KPRzJGent8r9vXd7ZebD-Xdp_cfb67vSqy5TKURcrRKDO0IpmtMRw1aBZ0aOostWZJ1jUT1KFqDIEkMFhWozsi6bRqhennFXpz27oP_uVFMenERaZ7NSn6LupM1KNnLOpPyRGLwMQYa9T64xYSD5qCPZvWk_5jVR7MaOp3N5tTz8_5tWMj-zZxVZuDVCaD8y3tHQUd0lF1aFwiTtt7958Drf_I4u9XlIn7QgeLkt7BmgZrrKDToz8dyj91CDyA5l_I3r0CiFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734083934</pqid></control><display><type>article</type><title>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nagy, Norbert ; Szűts, Viktória ; Horváth, Zoltán ; Seprényi, György ; Farkas, Attila S ; Acsai, Károly ; Prorok, János ; Bitay, Miklós ; Kun, Attila ; Pataricza, János ; Papp, Julius Gy ; Nánási, Péter P ; Varró, András ; Tóth, András</creator><creatorcontrib>Nagy, Norbert ; Szűts, Viktória ; Horváth, Zoltán ; Seprényi, György ; Farkas, Attila S ; Acsai, Károly ; Prorok, János ; Bitay, Miklós ; Kun, Attila ; Pataricza, János ; Papp, Julius Gy ; Nánási, Péter P ; Varró, András ; Tóth, András</creatorcontrib><description>Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2009.07.019</identifier><identifier>PMID: 19632238</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action potential ; Action Potentials - drug effects ; Animals ; Apamin ; Apamin - pharmacology ; Blotting, Western ; Cardiovascular ; Dogs ; Female ; Heart - drug effects ; Humans ; Immunohistochemistry ; Intracellular calcium ; Male ; Microscopy, Confocal ; Myocardium - metabolism ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Repolarization reserve ; SK2 ; Small-Conductance Calcium-Activated Potassium Channels - metabolism ; Small-Conductance Calcium-Activated Potassium Channels - physiology</subject><ispartof>Journal of molecular and cellular cardiology, 2009-11, Vol.47 (5), p.656-663</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</citedby><cites>FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022282809003113$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19632238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagy, Norbert</creatorcontrib><creatorcontrib>Szűts, Viktória</creatorcontrib><creatorcontrib>Horváth, Zoltán</creatorcontrib><creatorcontrib>Seprényi, György</creatorcontrib><creatorcontrib>Farkas, Attila S</creatorcontrib><creatorcontrib>Acsai, Károly</creatorcontrib><creatorcontrib>Prorok, János</creatorcontrib><creatorcontrib>Bitay, Miklós</creatorcontrib><creatorcontrib>Kun, Attila</creatorcontrib><creatorcontrib>Pataricza, János</creatorcontrib><creatorcontrib>Papp, Julius Gy</creatorcontrib><creatorcontrib>Nánási, Péter P</creatorcontrib><creatorcontrib>Varró, András</creatorcontrib><creatorcontrib>Tóth, András</creatorcontrib><title>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization.</description><subject>Action potential</subject><subject>Action Potentials - drug effects</subject><subject>Animals</subject><subject>Apamin</subject><subject>Apamin - pharmacology</subject><subject>Blotting, Western</subject><subject>Cardiovascular</subject><subject>Dogs</subject><subject>Female</subject><subject>Heart - drug effects</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Intracellular calcium</subject><subject>Male</subject><subject>Microscopy, Confocal</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Repolarization reserve</subject><subject>SK2</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - physiology</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7uzqLxCkb566rST9kT6oLOv6AQse1HNMV6oxbXdnTNIL46834wwIXjwFiuetIs_L2DMOFQfevpyqw7QgVgKgr6CrgPcP2I5D35SqUfVDtgMQohRKqAt2GeMEGaylfMwueN9KIaTasW9vPcUiLmaeS_Sr3TCZFalAM6PbltJgcvcmkS32PpkY86zA72ZdaS4yn4IbtkRF8jkRrDNYBNr72QT3yyTn1zdP2KPRzJGent8r9vXd7ZebD-Xdp_cfb67vSqy5TKURcrRKDO0IpmtMRw1aBZ0aOostWZJ1jUT1KFqDIEkMFhWozsi6bRqhennFXpz27oP_uVFMenERaZ7NSn6LupM1KNnLOpPyRGLwMQYa9T64xYSD5qCPZvWk_5jVR7MaOp3N5tTz8_5tWMj-zZxVZuDVCaD8y3tHQUd0lF1aFwiTtt7958Drf_I4u9XlIn7QgeLkt7BmgZrrKDToz8dyj91CDyA5l_I3r0CiFA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Nagy, Norbert</creator><creator>Szűts, Viktória</creator><creator>Horváth, Zoltán</creator><creator>Seprényi, György</creator><creator>Farkas, Attila S</creator><creator>Acsai, Károly</creator><creator>Prorok, János</creator><creator>Bitay, Miklós</creator><creator>Kun, Attila</creator><creator>Pataricza, János</creator><creator>Papp, Julius Gy</creator><creator>Nánási, Péter P</creator><creator>Varró, András</creator><creator>Tóth, András</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</title><author>Nagy, Norbert ; Szűts, Viktória ; Horváth, Zoltán ; Seprényi, György ; Farkas, Attila S ; Acsai, Károly ; Prorok, János ; Bitay, Miklós ; Kun, Attila ; Pataricza, János ; Papp, Julius Gy ; Nánási, Péter P ; Varró, András ; Tóth, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action potential</topic><topic>Action Potentials - drug effects</topic><topic>Animals</topic><topic>Apamin</topic><topic>Apamin - pharmacology</topic><topic>Blotting, Western</topic><topic>Cardiovascular</topic><topic>Dogs</topic><topic>Female</topic><topic>Heart - drug effects</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Intracellular calcium</topic><topic>Male</topic><topic>Microscopy, Confocal</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Repolarization reserve</topic><topic>SK2</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Norbert</creatorcontrib><creatorcontrib>Szűts, Viktória</creatorcontrib><creatorcontrib>Horváth, Zoltán</creatorcontrib><creatorcontrib>Seprényi, György</creatorcontrib><creatorcontrib>Farkas, Attila S</creatorcontrib><creatorcontrib>Acsai, Károly</creatorcontrib><creatorcontrib>Prorok, János</creatorcontrib><creatorcontrib>Bitay, Miklós</creatorcontrib><creatorcontrib>Kun, Attila</creatorcontrib><creatorcontrib>Pataricza, János</creatorcontrib><creatorcontrib>Papp, Julius Gy</creatorcontrib><creatorcontrib>Nánási, Péter P</creatorcontrib><creatorcontrib>Varró, András</creatorcontrib><creatorcontrib>Tóth, András</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Norbert</au><au>Szűts, Viktória</au><au>Horváth, Zoltán</au><au>Seprényi, György</au><au>Farkas, Attila S</au><au>Acsai, Károly</au><au>Prorok, János</au><au>Bitay, Miklós</au><au>Kun, Attila</au><au>Pataricza, János</au><au>Papp, Julius Gy</au><au>Nánási, Péter P</au><au>Varró, András</au><au>Tóth, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>47</volume><issue>5</issue><spage>656</spage><epage>663</epage><pages>656-663</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19632238</pmid><doi>10.1016/j.yjmcc.2009.07.019</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2828 |
ispartof | Journal of molecular and cellular cardiology, 2009-11, Vol.47 (5), p.656-663 |
issn | 0022-2828 1095-8584 |
language | eng |
recordid | cdi_proquest_miscellaneous_734083934 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action potential Action Potentials - drug effects Animals Apamin Apamin - pharmacology Blotting, Western Cardiovascular Dogs Female Heart - drug effects Humans Immunohistochemistry Intracellular calcium Male Microscopy, Confocal Myocardium - metabolism Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Patch-Clamp Techniques Rats Rats, Sprague-Dawley Repolarization reserve SK2 Small-Conductance Calcium-Activated Potassium Channels - metabolism Small-Conductance Calcium-Activated Potassium Channels - physiology |
title | Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20small-conductance%20calcium-activated%20potassium%20channel%20contribute%20to%20cardiac%20repolarization?&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Nagy,%20Norbert&rft.date=2009-11-01&rft.volume=47&rft.issue=5&rft.spage=656&rft.epage=663&rft.pages=656-663&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2009.07.019&rft_dat=%3Cproquest_cross%3E734083934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734083934&rft_id=info:pmid/19632238&rft_els_id=1_s2_0_S0022282809003113&rfr_iscdi=true |