Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?

Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2009-11, Vol.47 (5), p.656-663
Hauptverfasser: Nagy, Norbert, Szűts, Viktória, Horváth, Zoltán, Seprényi, György, Farkas, Attila S, Acsai, Károly, Prorok, János, Bitay, Miklós, Kun, Attila, Pataricza, János, Papp, Julius Gy, Nánási, Péter P, Varró, András, Tóth, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue 5
container_start_page 656
container_title Journal of molecular and cellular cardiology
container_volume 47
creator Nagy, Norbert
Szűts, Viktória
Horváth, Zoltán
Seprényi, György
Farkas, Attila S
Acsai, Károly
Prorok, János
Bitay, Miklós
Kun, Attila
Pataricza, János
Papp, Julius Gy
Nánási, Péter P
Varró, András
Tóth, András
description Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization.
doi_str_mv 10.1016/j.yjmcc.2009.07.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734083934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022282809003113</els_id><sourcerecordid>734083934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzqLxCkb566rST9kT6oLOv6AQse1HNMV6oxbXdnTNIL46834wwIXjwFiuetIs_L2DMOFQfevpyqw7QgVgKgr6CrgPcP2I5D35SqUfVDtgMQohRKqAt2GeMEGaylfMwueN9KIaTasW9vPcUiLmaeS_Sr3TCZFalAM6PbltJgcvcmkS32PpkY86zA72ZdaS4yn4IbtkRF8jkRrDNYBNr72QT3yyTn1zdP2KPRzJGent8r9vXd7ZebD-Xdp_cfb67vSqy5TKURcrRKDO0IpmtMRw1aBZ0aOostWZJ1jUT1KFqDIEkMFhWozsi6bRqhennFXpz27oP_uVFMenERaZ7NSn6LupM1KNnLOpPyRGLwMQYa9T64xYSD5qCPZvWk_5jVR7MaOp3N5tTz8_5tWMj-zZxVZuDVCaD8y3tHQUd0lF1aFwiTtt7958Drf_I4u9XlIn7QgeLkt7BmgZrrKDToz8dyj91CDyA5l_I3r0CiFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734083934</pqid></control><display><type>article</type><title>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nagy, Norbert ; Szűts, Viktória ; Horváth, Zoltán ; Seprényi, György ; Farkas, Attila S ; Acsai, Károly ; Prorok, János ; Bitay, Miklós ; Kun, Attila ; Pataricza, János ; Papp, Julius Gy ; Nánási, Péter P ; Varró, András ; Tóth, András</creator><creatorcontrib>Nagy, Norbert ; Szűts, Viktória ; Horváth, Zoltán ; Seprényi, György ; Farkas, Attila S ; Acsai, Károly ; Prorok, János ; Bitay, Miklós ; Kun, Attila ; Pataricza, János ; Papp, Julius Gy ; Nánási, Péter P ; Varró, András ; Tóth, András</creatorcontrib><description>Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2009.07.019</identifier><identifier>PMID: 19632238</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action potential ; Action Potentials - drug effects ; Animals ; Apamin ; Apamin - pharmacology ; Blotting, Western ; Cardiovascular ; Dogs ; Female ; Heart - drug effects ; Humans ; Immunohistochemistry ; Intracellular calcium ; Male ; Microscopy, Confocal ; Myocardium - metabolism ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Repolarization reserve ; SK2 ; Small-Conductance Calcium-Activated Potassium Channels - metabolism ; Small-Conductance Calcium-Activated Potassium Channels - physiology</subject><ispartof>Journal of molecular and cellular cardiology, 2009-11, Vol.47 (5), p.656-663</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</citedby><cites>FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022282809003113$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19632238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagy, Norbert</creatorcontrib><creatorcontrib>Szűts, Viktória</creatorcontrib><creatorcontrib>Horváth, Zoltán</creatorcontrib><creatorcontrib>Seprényi, György</creatorcontrib><creatorcontrib>Farkas, Attila S</creatorcontrib><creatorcontrib>Acsai, Károly</creatorcontrib><creatorcontrib>Prorok, János</creatorcontrib><creatorcontrib>Bitay, Miklós</creatorcontrib><creatorcontrib>Kun, Attila</creatorcontrib><creatorcontrib>Pataricza, János</creatorcontrib><creatorcontrib>Papp, Julius Gy</creatorcontrib><creatorcontrib>Nánási, Péter P</creatorcontrib><creatorcontrib>Varró, András</creatorcontrib><creatorcontrib>Tóth, András</creatorcontrib><title>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization.</description><subject>Action potential</subject><subject>Action Potentials - drug effects</subject><subject>Animals</subject><subject>Apamin</subject><subject>Apamin - pharmacology</subject><subject>Blotting, Western</subject><subject>Cardiovascular</subject><subject>Dogs</subject><subject>Female</subject><subject>Heart - drug effects</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Intracellular calcium</subject><subject>Male</subject><subject>Microscopy, Confocal</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Repolarization reserve</subject><subject>SK2</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - physiology</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7uzqLxCkb566rST9kT6oLOv6AQse1HNMV6oxbXdnTNIL46834wwIXjwFiuetIs_L2DMOFQfevpyqw7QgVgKgr6CrgPcP2I5D35SqUfVDtgMQohRKqAt2GeMEGaylfMwueN9KIaTasW9vPcUiLmaeS_Sr3TCZFalAM6PbltJgcvcmkS32PpkY86zA72ZdaS4yn4IbtkRF8jkRrDNYBNr72QT3yyTn1zdP2KPRzJGent8r9vXd7ZebD-Xdp_cfb67vSqy5TKURcrRKDO0IpmtMRw1aBZ0aOostWZJ1jUT1KFqDIEkMFhWozsi6bRqhennFXpz27oP_uVFMenERaZ7NSn6LupM1KNnLOpPyRGLwMQYa9T64xYSD5qCPZvWk_5jVR7MaOp3N5tTz8_5tWMj-zZxVZuDVCaD8y3tHQUd0lF1aFwiTtt7958Drf_I4u9XlIn7QgeLkt7BmgZrrKDToz8dyj91CDyA5l_I3r0CiFA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Nagy, Norbert</creator><creator>Szűts, Viktória</creator><creator>Horváth, Zoltán</creator><creator>Seprényi, György</creator><creator>Farkas, Attila S</creator><creator>Acsai, Károly</creator><creator>Prorok, János</creator><creator>Bitay, Miklós</creator><creator>Kun, Attila</creator><creator>Pataricza, János</creator><creator>Papp, Julius Gy</creator><creator>Nánási, Péter P</creator><creator>Varró, András</creator><creator>Tóth, András</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</title><author>Nagy, Norbert ; Szűts, Viktória ; Horváth, Zoltán ; Seprényi, György ; Farkas, Attila S ; Acsai, Károly ; Prorok, János ; Bitay, Miklós ; Kun, Attila ; Pataricza, János ; Papp, Julius Gy ; Nánási, Péter P ; Varró, András ; Tóth, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a23fd82b6f0a75a7e5cd8078b7dc6ede344cee4f26ac03e2bdc8087a346552893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action potential</topic><topic>Action Potentials - drug effects</topic><topic>Animals</topic><topic>Apamin</topic><topic>Apamin - pharmacology</topic><topic>Blotting, Western</topic><topic>Cardiovascular</topic><topic>Dogs</topic><topic>Female</topic><topic>Heart - drug effects</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Intracellular calcium</topic><topic>Male</topic><topic>Microscopy, Confocal</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Repolarization reserve</topic><topic>SK2</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Norbert</creatorcontrib><creatorcontrib>Szűts, Viktória</creatorcontrib><creatorcontrib>Horváth, Zoltán</creatorcontrib><creatorcontrib>Seprényi, György</creatorcontrib><creatorcontrib>Farkas, Attila S</creatorcontrib><creatorcontrib>Acsai, Károly</creatorcontrib><creatorcontrib>Prorok, János</creatorcontrib><creatorcontrib>Bitay, Miklós</creatorcontrib><creatorcontrib>Kun, Attila</creatorcontrib><creatorcontrib>Pataricza, János</creatorcontrib><creatorcontrib>Papp, Julius Gy</creatorcontrib><creatorcontrib>Nánási, Péter P</creatorcontrib><creatorcontrib>Varró, András</creatorcontrib><creatorcontrib>Tóth, András</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Norbert</au><au>Szűts, Viktória</au><au>Horváth, Zoltán</au><au>Seprényi, György</au><au>Farkas, Attila S</au><au>Acsai, Károly</au><au>Prorok, János</au><au>Bitay, Miklós</au><au>Kun, Attila</au><au>Pataricza, János</au><au>Papp, Julius Gy</au><au>Nánási, Péter P</au><au>Varró, András</au><au>Tóth, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>47</volume><issue>5</issue><spage>656</spage><epage>663</epage><pages>656-663</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Abstract Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac “repolarization reserve”, where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin – in contrast to the previous report – did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions – though present – SK2 channels are not active and do not contribute to action potential repolarization.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19632238</pmid><doi>10.1016/j.yjmcc.2009.07.019</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2828
ispartof Journal of molecular and cellular cardiology, 2009-11, Vol.47 (5), p.656-663
issn 0022-2828
1095-8584
language eng
recordid cdi_proquest_miscellaneous_734083934
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action potential
Action Potentials - drug effects
Animals
Apamin
Apamin - pharmacology
Blotting, Western
Cardiovascular
Dogs
Female
Heart - drug effects
Humans
Immunohistochemistry
Intracellular calcium
Male
Microscopy, Confocal
Myocardium - metabolism
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Patch-Clamp Techniques
Rats
Rats, Sprague-Dawley
Repolarization reserve
SK2
Small-Conductance Calcium-Activated Potassium Channels - metabolism
Small-Conductance Calcium-Activated Potassium Channels - physiology
title Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20small-conductance%20calcium-activated%20potassium%20channel%20contribute%20to%20cardiac%20repolarization?&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Nagy,%20Norbert&rft.date=2009-11-01&rft.volume=47&rft.issue=5&rft.spage=656&rft.epage=663&rft.pages=656-663&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2009.07.019&rft_dat=%3Cproquest_cross%3E734083934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734083934&rft_id=info:pmid/19632238&rft_els_id=1_s2_0_S0022282809003113&rfr_iscdi=true