Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles

A facile strategy of loading thiolated single-stranded DNA (ss-DNA) on gold nanoparticles (NPs) has been developed. The gold NPs stabilized by nonionic fluorosurfactant (i.e., Zonyl FSN) are simply mixed with the thiolated ssDNA in the presence of NaCl (up to 1.0 M), and the ssDNA−NP conjugates are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2009-10, Vol.81 (20), p.8523-8528
Hauptverfasser: Zu, Yanbing, Gao, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8528
container_issue 20
container_start_page 8523
container_title Analytical chemistry (Washington)
container_volume 81
creator Zu, Yanbing
Gao, Zhiqiang
description A facile strategy of loading thiolated single-stranded DNA (ss-DNA) on gold nanoparticles (NPs) has been developed. The gold NPs stabilized by nonionic fluorosurfactant (i.e., Zonyl FSN) are simply mixed with the thiolated ssDNA in the presence of NaCl (up to 1.0 M), and the ssDNA−NP conjugates are attained after an incubation of 2 h. The loading density of the ssDNA is controlled by the salt concentration in the immobilization solution. The FSN capping layer inhibits effectively the nonspecific adsorption of nucleobases on the NPs but allows for rapid attachment of the thiolated ssDNA through the sulfur−gold linkage, which may lead to an upright orientation of the immobilized ssDNA. The maximum loading density of the ssDNA obtained in 1.0 M NaCl is sensitive to several factors, such as the type of the spacer, the length of the ssDNA strands, and the NP size. The hybridization behavior of the ssDNA−NP conjugates with complementary ssDNA in solution was examined. For the conjugates of 13 nm-diameter NPs, the hybridization efficiency can reach ∼60% when the surface density of the ssDNA on the gold NP is lower than ∼15 pmol/cm2. As the ssDNA probes are more densely packed on the NPs, the hybridization efficiency drops consequently.
doi_str_mv 10.1021/ac901459v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734082077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881892671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-e2b94f67e6367e035d21eceb5ba5be8da6977f0884197b943faadf1ac5777a63</originalsourceid><addsrcrecordid>eNpl0EFLwzAUB_AgipvTg19AiiDiofqSpk17HNNNoczDdi-vaSIdXTOTVvDbG1nZQC95EH689-dPyDWFRwqMPqHMgPI4-zohYxozCJM0ZadkDABRyATAiFw4twGgFGhyTkY0EzGFmI1JPkdZNyrAtgpmpu2saRos_UdusKrbj8DoYOVno8JVZ71SVfC8nAamDRamqYIltmaHtqtlo9wlOdPYOHU1zAlZz1_Ws9cwf1-8zaZ5iDwSXahYmXGdCJVE_oEorhhVUpVxiXGp0gqTTAgNacp9Tk8jjVhpijIWQmASTcj9fu3Oms9eua7Y1k4qH7xVpneFiDikDITw8vaP3Jjetj5bwahIRUY59-hhj6Q1zlmli52tt2i_CwrFb7_FoV9vb4aFfblV1VEOhXpwNwB0EhvtK5O1OzjGIGGp4EeH0h1D_T_4A48zjHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217879144</pqid></control><display><type>article</type><title>Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zu, Yanbing ; Gao, Zhiqiang</creator><creatorcontrib>Zu, Yanbing ; Gao, Zhiqiang</creatorcontrib><description>A facile strategy of loading thiolated single-stranded DNA (ss-DNA) on gold nanoparticles (NPs) has been developed. The gold NPs stabilized by nonionic fluorosurfactant (i.e., Zonyl FSN) are simply mixed with the thiolated ssDNA in the presence of NaCl (up to 1.0 M), and the ssDNA−NP conjugates are attained after an incubation of 2 h. The loading density of the ssDNA is controlled by the salt concentration in the immobilization solution. The FSN capping layer inhibits effectively the nonspecific adsorption of nucleobases on the NPs but allows for rapid attachment of the thiolated ssDNA through the sulfur−gold linkage, which may lead to an upright orientation of the immobilized ssDNA. The maximum loading density of the ssDNA obtained in 1.0 M NaCl is sensitive to several factors, such as the type of the spacer, the length of the ssDNA strands, and the NP size. The hybridization behavior of the ssDNA−NP conjugates with complementary ssDNA in solution was examined. For the conjugates of 13 nm-diameter NPs, the hybridization efficiency can reach ∼60% when the surface density of the ssDNA on the gold NP is lower than ∼15 pmol/cm2. As the ssDNA probes are more densely packed on the NPs, the hybridization efficiency drops consequently.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac901459v</identifier><identifier>PMID: 19751052</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Analytical, structural and metabolic biochemistry ; Base Sequence ; Biological and medical sciences ; Deoxyribonucleic acid ; DNA ; Dna, deoxyribonucleoproteins ; DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - genetics ; Fundamental and applied biological sciences. Psychology ; Gold ; Gold - chemistry ; Hybridization ; Metal Nanoparticles - chemistry ; Nanoparticles ; Nucleic Acid Hybridization ; Nucleic acids ; Organic Chemicals - chemistry ; Sulfur - chemistry ; Surface Properties ; Surface-Active Agents - chemistry</subject><ispartof>Analytical chemistry (Washington), 2009-10, Vol.81 (20), p.8523-8528</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-e2b94f67e6367e035d21eceb5ba5be8da6977f0884197b943faadf1ac5777a63</citedby><cites>FETCH-LOGICAL-a437t-e2b94f67e6367e035d21eceb5ba5be8da6977f0884197b943faadf1ac5777a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac901459v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac901459v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22062874$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19751052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zu, Yanbing</creatorcontrib><creatorcontrib>Gao, Zhiqiang</creatorcontrib><title>Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A facile strategy of loading thiolated single-stranded DNA (ss-DNA) on gold nanoparticles (NPs) has been developed. The gold NPs stabilized by nonionic fluorosurfactant (i.e., Zonyl FSN) are simply mixed with the thiolated ssDNA in the presence of NaCl (up to 1.0 M), and the ssDNA−NP conjugates are attained after an incubation of 2 h. The loading density of the ssDNA is controlled by the salt concentration in the immobilization solution. The FSN capping layer inhibits effectively the nonspecific adsorption of nucleobases on the NPs but allows for rapid attachment of the thiolated ssDNA through the sulfur−gold linkage, which may lead to an upright orientation of the immobilized ssDNA. The maximum loading density of the ssDNA obtained in 1.0 M NaCl is sensitive to several factors, such as the type of the spacer, the length of the ssDNA strands, and the NP size. The hybridization behavior of the ssDNA−NP conjugates with complementary ssDNA in solution was examined. For the conjugates of 13 nm-diameter NPs, the hybridization efficiency can reach ∼60% when the surface density of the ssDNA on the gold NP is lower than ∼15 pmol/cm2. As the ssDNA probes are more densely packed on the NPs, the hybridization efficiency drops consequently.</description><subject>Adsorption</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dna, deoxyribonucleoproteins</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Hybridization</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanoparticles</subject><subject>Nucleic Acid Hybridization</subject><subject>Nucleic acids</subject><subject>Organic Chemicals - chemistry</subject><subject>Sulfur - chemistry</subject><subject>Surface Properties</subject><subject>Surface-Active Agents - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0EFLwzAUB_AgipvTg19AiiDiofqSpk17HNNNoczDdi-vaSIdXTOTVvDbG1nZQC95EH689-dPyDWFRwqMPqHMgPI4-zohYxozCJM0ZadkDABRyATAiFw4twGgFGhyTkY0EzGFmI1JPkdZNyrAtgpmpu2saRos_UdusKrbj8DoYOVno8JVZ71SVfC8nAamDRamqYIltmaHtqtlo9wlOdPYOHU1zAlZz1_Ws9cwf1-8zaZ5iDwSXahYmXGdCJVE_oEorhhVUpVxiXGp0gqTTAgNacp9Tk8jjVhpijIWQmASTcj9fu3Oms9eua7Y1k4qH7xVpneFiDikDITw8vaP3Jjetj5bwahIRUY59-hhj6Q1zlmli52tt2i_CwrFb7_FoV9vb4aFfblV1VEOhXpwNwB0EhvtK5O1OzjGIGGp4EeH0h1D_T_4A48zjHQ</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>Zu, Yanbing</creator><creator>Gao, Zhiqiang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20091015</creationdate><title>Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles</title><author>Zu, Yanbing ; Gao, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-e2b94f67e6367e035d21eceb5ba5be8da6977f0884197b943faadf1ac5777a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adsorption</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dna, deoxyribonucleoproteins</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Hybridization</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanoparticles</topic><topic>Nucleic Acid Hybridization</topic><topic>Nucleic acids</topic><topic>Organic Chemicals - chemistry</topic><topic>Sulfur - chemistry</topic><topic>Surface Properties</topic><topic>Surface-Active Agents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Yanbing</creatorcontrib><creatorcontrib>Gao, Zhiqiang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Yanbing</au><au>Gao, Zhiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2009-10-15</date><risdate>2009</risdate><volume>81</volume><issue>20</issue><spage>8523</spage><epage>8528</epage><pages>8523-8528</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A facile strategy of loading thiolated single-stranded DNA (ss-DNA) on gold nanoparticles (NPs) has been developed. The gold NPs stabilized by nonionic fluorosurfactant (i.e., Zonyl FSN) are simply mixed with the thiolated ssDNA in the presence of NaCl (up to 1.0 M), and the ssDNA−NP conjugates are attained after an incubation of 2 h. The loading density of the ssDNA is controlled by the salt concentration in the immobilization solution. The FSN capping layer inhibits effectively the nonspecific adsorption of nucleobases on the NPs but allows for rapid attachment of the thiolated ssDNA through the sulfur−gold linkage, which may lead to an upright orientation of the immobilized ssDNA. The maximum loading density of the ssDNA obtained in 1.0 M NaCl is sensitive to several factors, such as the type of the spacer, the length of the ssDNA strands, and the NP size. The hybridization behavior of the ssDNA−NP conjugates with complementary ssDNA in solution was examined. For the conjugates of 13 nm-diameter NPs, the hybridization efficiency can reach ∼60% when the surface density of the ssDNA on the gold NP is lower than ∼15 pmol/cm2. As the ssDNA probes are more densely packed on the NPs, the hybridization efficiency drops consequently.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19751052</pmid><doi>10.1021/ac901459v</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2009-10, Vol.81 (20), p.8523-8528
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_734082077
source MEDLINE; ACS Publications
subjects Adsorption
Analytical, structural and metabolic biochemistry
Base Sequence
Biological and medical sciences
Deoxyribonucleic acid
DNA
Dna, deoxyribonucleoproteins
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - genetics
Fundamental and applied biological sciences. Psychology
Gold
Gold - chemistry
Hybridization
Metal Nanoparticles - chemistry
Nanoparticles
Nucleic Acid Hybridization
Nucleic acids
Organic Chemicals - chemistry
Sulfur - chemistry
Surface Properties
Surface-Active Agents - chemistry
title Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20and%20Controllable%20Loading%20of%20Single-Stranded%20DNA%20on%20Gold%20Nanoparticles&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zu,%20Yanbing&rft.date=2009-10-15&rft.volume=81&rft.issue=20&rft.spage=8523&rft.epage=8528&rft.pages=8523-8528&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac901459v&rft_dat=%3Cproquest_cross%3E1881892671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217879144&rft_id=info:pmid/19751052&rfr_iscdi=true