Wave equations for one-dimensional inhomogenous anisotropic dielectric structures

In general, Maxwell equations are coupled when governing light propagation through one-dimensional inhomogeneous anisotropic dielectric structures. However, for on-axis propagation in one-dimensional inhomogeneous uniaxially anisotropic dielectric structures with any orientation of the optic axis, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2009-07, Vol.34 (14), p.2090-2092
Hauptverfasser: ALAGAPPAN, G, WU, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2092
container_issue 14
container_start_page 2090
container_title Optics letters
container_volume 34
creator ALAGAPPAN, G
WU, P
description In general, Maxwell equations are coupled when governing light propagation through one-dimensional inhomogeneous anisotropic dielectric structures. However, for on-axis propagation in one-dimensional inhomogeneous uniaxially anisotropic dielectric structures with any orientation of the optic axis, and biaxially anisotropic structures with certain orientations of principal axes, we show that the equations can be decoupled into two wave equations satisfied by the two independent polarizations of light. Furthermore, the dielectric tensor in the original Maxwell equations is replaced with effective dielectric constants for each polarization of the light. We also give specialized results for anisotropic multilayer dielectric structures and one-dimensional anisotropic photonic crystals.
doi_str_mv 10.1364/OL.34.002090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734081571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734081571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-a20b24b26bdde574b81e7dd8b21a08089fcec6fc6849b2fbdcf14904c28d77a53</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgiruu3jxLL-LFrpOPtslRFr-gsAiKx5ImU420zW7SCv57K7voaYbh4WV4CTmnsKQ8FzfrcsnFEoCBggMypxlXqSiUOCRzoCJPVabYjJzE-AkAecH5MZlRJRnPKJ2T5zf9hQluRz0438ek8SHxPabWddjH6aTbxPUfvvPv2PsxJrp30Q_Bb5xJrMMWzRCmNQ5hNMMYMJ6So0a3Ec_2c0Fe7-9eVo9puX54Wt2WqeEMhlQzqJmoWV5bi1khakmxsFbWjGqQIFVj0OSNyaVQNWtqaxoqFAjDpC0KnfEFudrlboLfjhiHqnPRYNvqHqdHq4ILkDQr6CSvd9IEH2PAptoE1-nwXVGofjus1mXFRbXrcOIX--Cx7tD-431pE7jcAx2Nbpuge-Pin2NUAmSU8x_aR3r3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734081571</pqid></control><display><type>article</type><title>Wave equations for one-dimensional inhomogenous anisotropic dielectric structures</title><source>Optica Publishing Group Journals</source><creator>ALAGAPPAN, G ; WU, P</creator><creatorcontrib>ALAGAPPAN, G ; WU, P</creatorcontrib><description>In general, Maxwell equations are coupled when governing light propagation through one-dimensional inhomogeneous anisotropic dielectric structures. However, for on-axis propagation in one-dimensional inhomogeneous uniaxially anisotropic dielectric structures with any orientation of the optic axis, and biaxially anisotropic structures with certain orientations of principal axes, we show that the equations can be decoupled into two wave equations satisfied by the two independent polarizations of light. Furthermore, the dielectric tensor in the original Maxwell equations is replaced with effective dielectric constants for each polarization of the light. We also give specialized results for anisotropic multilayer dielectric structures and one-dimensional anisotropic photonic crystals.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.34.002090</identifier><identifier>PMID: 19823511</identifier><identifier>CODEN: OPLEDP</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Optical elements, devices, and systems ; Optics ; Physics ; Reflectors, beam splitters, and deflectors ; Wave optics ; Wave propagation, transmission and absorption</subject><ispartof>Optics letters, 2009-07, Vol.34 (14), p.2090-2092</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-a20b24b26bdde574b81e7dd8b21a08089fcec6fc6849b2fbdcf14904c28d77a53</citedby><cites>FETCH-LOGICAL-c320t-a20b24b26bdde574b81e7dd8b21a08089fcec6fc6849b2fbdcf14904c28d77a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21800513$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19823511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ALAGAPPAN, G</creatorcontrib><creatorcontrib>WU, P</creatorcontrib><title>Wave equations for one-dimensional inhomogenous anisotropic dielectric structures</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>In general, Maxwell equations are coupled when governing light propagation through one-dimensional inhomogeneous anisotropic dielectric structures. However, for on-axis propagation in one-dimensional inhomogeneous uniaxially anisotropic dielectric structures with any orientation of the optic axis, and biaxially anisotropic structures with certain orientations of principal axes, we show that the equations can be decoupled into two wave equations satisfied by the two independent polarizations of light. Furthermore, the dielectric tensor in the original Maxwell equations is replaced with effective dielectric constants for each polarization of the light. We also give specialized results for anisotropic multilayer dielectric structures and one-dimensional anisotropic photonic crystals.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Physics</subject><subject>Reflectors, beam splitters, and deflectors</subject><subject>Wave optics</subject><subject>Wave propagation, transmission and absorption</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgiruu3jxLL-LFrpOPtslRFr-gsAiKx5ImU420zW7SCv57K7voaYbh4WV4CTmnsKQ8FzfrcsnFEoCBggMypxlXqSiUOCRzoCJPVabYjJzE-AkAecH5MZlRJRnPKJ2T5zf9hQluRz0438ek8SHxPabWddjH6aTbxPUfvvPv2PsxJrp30Q_Bb5xJrMMWzRCmNQ5hNMMYMJ6So0a3Ec_2c0Fe7-9eVo9puX54Wt2WqeEMhlQzqJmoWV5bi1khakmxsFbWjGqQIFVj0OSNyaVQNWtqaxoqFAjDpC0KnfEFudrlboLfjhiHqnPRYNvqHqdHq4ILkDQr6CSvd9IEH2PAptoE1-nwXVGofjus1mXFRbXrcOIX--Cx7tD-431pE7jcAx2Nbpuge-Pin2NUAmSU8x_aR3r3</recordid><startdate>20090715</startdate><enddate>20090715</enddate><creator>ALAGAPPAN, G</creator><creator>WU, P</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090715</creationdate><title>Wave equations for one-dimensional inhomogenous anisotropic dielectric structures</title><author>ALAGAPPAN, G ; WU, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-a20b24b26bdde574b81e7dd8b21a08089fcec6fc6849b2fbdcf14904c28d77a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Physics</topic><topic>Reflectors, beam splitters, and deflectors</topic><topic>Wave optics</topic><topic>Wave propagation, transmission and absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALAGAPPAN, G</creatorcontrib><creatorcontrib>WU, P</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALAGAPPAN, G</au><au>WU, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave equations for one-dimensional inhomogenous anisotropic dielectric structures</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2009-07-15</date><risdate>2009</risdate><volume>34</volume><issue>14</issue><spage>2090</spage><epage>2092</epage><pages>2090-2092</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><coden>OPLEDP</coden><abstract>In general, Maxwell equations are coupled when governing light propagation through one-dimensional inhomogeneous anisotropic dielectric structures. However, for on-axis propagation in one-dimensional inhomogeneous uniaxially anisotropic dielectric structures with any orientation of the optic axis, and biaxially anisotropic structures with certain orientations of principal axes, we show that the equations can be decoupled into two wave equations satisfied by the two independent polarizations of light. Furthermore, the dielectric tensor in the original Maxwell equations is replaced with effective dielectric constants for each polarization of the light. We also give specialized results for anisotropic multilayer dielectric structures and one-dimensional anisotropic photonic crystals.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>19823511</pmid><doi>10.1364/OL.34.002090</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2009-07, Vol.34 (14), p.2090-2092
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_734081571
source Optica Publishing Group Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Optical elements, devices, and systems
Optics
Physics
Reflectors, beam splitters, and deflectors
Wave optics
Wave propagation, transmission and absorption
title Wave equations for one-dimensional inhomogenous anisotropic dielectric structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20equations%20for%20one-dimensional%20inhomogenous%20anisotropic%20dielectric%20structures&rft.jtitle=Optics%20letters&rft.au=ALAGAPPAN,%20G&rft.date=2009-07-15&rft.volume=34&rft.issue=14&rft.spage=2090&rft.epage=2092&rft.pages=2090-2092&rft.issn=0146-9592&rft.eissn=1539-4794&rft.coden=OPLEDP&rft_id=info:doi/10.1364/OL.34.002090&rft_dat=%3Cproquest_cross%3E734081571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734081571&rft_id=info:pmid/19823511&rfr_iscdi=true