Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors

In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2009-10, Vol.54 (20), p.6263-6276
Hauptverfasser: Carvajal, M A, García-Pareja, S, Guirado, D, Vilches, M, Anguiano, M, Palma, A J, Lallena, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6276
container_issue 20
container_start_page 6263
container_title Physics in medicine & biology
container_volume 54
creator Carvajal, M A
García-Pareja, S
Guirado, D
Vilches, M
Anguiano, M
Palma, A J
Lallena, A M
description In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.
doi_str_mv 10.1088/0031-9155/54/20/015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734076115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734076115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d7c61ceb189d9f0e511487ebc8f803a8969d5ede3287e1033f92d7cad343d4ec3</originalsourceid><addsrcrecordid>eNqNkFFr2zAUhcVoWdNsv2BQ9FYYONG1JFt-HCFdC2kT6PYsFOm69bCtzJIp-fdTmrA9dA8FgeDc75yHj5AvwGbAlJozxiGrQMq5FPOczRnID2QCvICskAU7I5O_xAW5DOEXYwAqFx_JBVRlJXJRTgje-z4iXZih9TQ03dia2PiejqHpn2h8RrpZPixX682SWu-QvjTxmZo-vZiC1vd7atonP6S4ozFNxNHt6f368Wb5gzqMaKMfwidyXps24OfTPyU_031xm63W3-8W31aZ5aWKmSttARa3oCpX1QwlgFAlbq2qFeNGVUXlJDrkeUqBcV5XeeoYxwV3Ai2fkuvj7m7wv0cMUXdNsNi2pkc_Bl1ywcoCQCaSH0k7-BAGrPVuaDoz7DUwfdCrD_L0QZ6WQudMs9fW1Wl_3Hbo_nVOPhMwOwKN371z8evbwn9AvXM1_wOl6I_t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734076115</pqid></control><display><type>article</type><title>Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Carvajal, M A ; García-Pareja, S ; Guirado, D ; Vilches, M ; Anguiano, M ; Palma, A J ; Lallena, A M</creator><creatorcontrib>Carvajal, M A ; García-Pareja, S ; Guirado, D ; Vilches, M ; Anguiano, M ; Palma, A J ; Lallena, A M</creatorcontrib><description>In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/54/20/015</identifier><identifier>PMID: 19794247</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Animals ; Ants ; Behavior, Animal ; Cobalt Radioisotopes ; Computer Simulation ; Electrons ; Equipment Design ; Humans ; Monte Carlo Method ; Photons ; Radiometry - methods ; Radiotherapy - methods ; Radiotherapy Dosage ; Silicon Dioxide - chemistry ; Software</subject><ispartof>Physics in medicine &amp; biology, 2009-10, Vol.54 (20), p.6263-6276</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d7c61ceb189d9f0e511487ebc8f803a8969d5ede3287e1033f92d7cad343d4ec3</citedby><cites>FETCH-LOGICAL-c378t-d7c61ceb189d9f0e511487ebc8f803a8969d5ede3287e1033f92d7cad343d4ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/54/20/015/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19794247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvajal, M A</creatorcontrib><creatorcontrib>García-Pareja, S</creatorcontrib><creatorcontrib>Guirado, D</creatorcontrib><creatorcontrib>Vilches, M</creatorcontrib><creatorcontrib>Anguiano, M</creatorcontrib><creatorcontrib>Palma, A J</creatorcontrib><creatorcontrib>Lallena, A M</creatorcontrib><title>Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Ants</subject><subject>Behavior, Animal</subject><subject>Cobalt Radioisotopes</subject><subject>Computer Simulation</subject><subject>Electrons</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Monte Carlo Method</subject><subject>Photons</subject><subject>Radiometry - methods</subject><subject>Radiotherapy - methods</subject><subject>Radiotherapy Dosage</subject><subject>Silicon Dioxide - chemistry</subject><subject>Software</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkFFr2zAUhcVoWdNsv2BQ9FYYONG1JFt-HCFdC2kT6PYsFOm69bCtzJIp-fdTmrA9dA8FgeDc75yHj5AvwGbAlJozxiGrQMq5FPOczRnID2QCvICskAU7I5O_xAW5DOEXYwAqFx_JBVRlJXJRTgje-z4iXZih9TQ03dia2PiejqHpn2h8RrpZPixX682SWu-QvjTxmZo-vZiC1vd7atonP6S4ozFNxNHt6f368Wb5gzqMaKMfwidyXps24OfTPyU_031xm63W3-8W31aZ5aWKmSttARa3oCpX1QwlgFAlbq2qFeNGVUXlJDrkeUqBcV5XeeoYxwV3Ai2fkuvj7m7wv0cMUXdNsNi2pkc_Bl1ywcoCQCaSH0k7-BAGrPVuaDoz7DUwfdCrD_L0QZ6WQudMs9fW1Wl_3Hbo_nVOPhMwOwKN371z8evbwn9AvXM1_wOl6I_t</recordid><startdate>20091021</startdate><enddate>20091021</enddate><creator>Carvajal, M A</creator><creator>García-Pareja, S</creator><creator>Guirado, D</creator><creator>Vilches, M</creator><creator>Anguiano, M</creator><creator>Palma, A J</creator><creator>Lallena, A M</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091021</creationdate><title>Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors</title><author>Carvajal, M A ; García-Pareja, S ; Guirado, D ; Vilches, M ; Anguiano, M ; Palma, A J ; Lallena, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d7c61ceb189d9f0e511487ebc8f803a8969d5ede3287e1033f92d7cad343d4ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Ants</topic><topic>Behavior, Animal</topic><topic>Cobalt Radioisotopes</topic><topic>Computer Simulation</topic><topic>Electrons</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Monte Carlo Method</topic><topic>Photons</topic><topic>Radiometry - methods</topic><topic>Radiotherapy - methods</topic><topic>Radiotherapy Dosage</topic><topic>Silicon Dioxide - chemistry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvajal, M A</creatorcontrib><creatorcontrib>García-Pareja, S</creatorcontrib><creatorcontrib>Guirado, D</creatorcontrib><creatorcontrib>Vilches, M</creatorcontrib><creatorcontrib>Anguiano, M</creatorcontrib><creatorcontrib>Palma, A J</creatorcontrib><creatorcontrib>Lallena, A M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvajal, M A</au><au>García-Pareja, S</au><au>Guirado, D</au><au>Vilches, M</au><au>Anguiano, M</au><au>Palma, A J</au><au>Lallena, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2009-10-21</date><risdate>2009</risdate><volume>54</volume><issue>20</issue><spage>6263</spage><epage>6276</epage><pages>6263-6276</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>19794247</pmid><doi>10.1088/0031-9155/54/20/015</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2009-10, Vol.54 (20), p.6263-6276
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_734076115
source MEDLINE; Institute of Physics Journals
subjects Algorithms
Animals
Ants
Behavior, Animal
Cobalt Radioisotopes
Computer Simulation
Electrons
Equipment Design
Humans
Monte Carlo Method
Photons
Radiometry - methods
Radiotherapy - methods
Radiotherapy Dosage
Silicon Dioxide - chemistry
Software
title Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20using%20the%20PENELOPE%20code%20with%20an%20ant%20colony%20algorithm%20to%20study%20MOSFET%20detectors&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Carvajal,%20M%20A&rft.date=2009-10-21&rft.volume=54&rft.issue=20&rft.spage=6263&rft.epage=6276&rft.pages=6263-6276&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/54/20/015&rft_dat=%3Cproquest_cross%3E734076115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734076115&rft_id=info:pmid/19794247&rfr_iscdi=true