On the road to understanding of the osteoblast adhesion: Cytoskeleton organization is rearranged by distinct signaling pathways
Pre‐osteoblast adhesion attracts increasing interest in both medicine and dentistry. However, how this physiological event alters osteoblast phenotype is poorly understood. We therefore attempted to address this question by investigating key biochemical mechanism that governs pre‐osteoblast adhesion...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2009-09, Vol.108 (1), p.134-144 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1 |
container_start_page | 134 |
container_title | Journal of cellular biochemistry |
container_volume | 108 |
creator | Zambuzzi, Willian Fernando Bruni-Cardoso, Alexandre Granjeiro, José Mauro Peppelenbosch, Maikel Petrus de Carvalho, Hernandes Faustino Aoyama, Hiroshi Ferreira, Carmen Veríssima |
description | Pre‐osteoblast adhesion attracts increasing interest in both medicine and dentistry. However, how this physiological event alters osteoblast phenotype is poorly understood. We therefore attempted to address this question by investigating key biochemical mechanism that governs pre‐osteoblast adhesion on polystyrene surface. Importantly, we found that cofilin activity was strongly modulated by PP2A (Ser/Thr phosphatase), while cell‐cycle was arrested. Accordingly, we observed that the profile of cofilin phosphorylation (at Ser03) was similar to phospho‐PP2A (at Tyr307). Also, it is plausible to suggest during pre‐osteoblast adhesion that PP2A phosphorylation at Y307 was executed by phospho‐Src (Y416). In addition, it was observed that MAPKp38, but not MAPK‐erk, played a key role on pre‐osteoblast adhesion by phosphorylating MAPKAPK‐2 and ATF‐2 (also called CRE‐BP1). Also, the up‐modulation of RhoA reported here suggests its involvement at the beginning of osteoblast attachment, while Akt remained active during all periods. Altogether, our results clearly showed that osteoblast adhesion is under an intricate network of signaling molecules, which are responsible to guide their interaction with substrate mainly via cytoskeleton rearrangement. J. Cell. Biochem. 108: 134–144, 2009. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jcb.22236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734060038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017955753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4616-247432b20ac4739c4f457f8e791292d29c2ea06215e97a6e9678f2ef131f505a3</originalsourceid><addsrcrecordid>eNp9kT1vFDEURS0EIkuSgj-A3AHFJP72mC6sIAEFIkWJoLM8M292nczai-1VGBr-OpPsAhVUr7jnnuJdhJ5TckQJYcc3bXPEGOPqEZpRYnQllBCP0YxoTirGKdtDz3K-IYQYw9lTtEeNVEypeoZ-XgRcloBTdB0uEW9CBykXFzofFjj2D2HMBWIzuFyw65aQfQxv8HwsMd_CACUGHNPCBf_DlSnCPuMELiUXFtDhZsSdz8WHtuDsF8EN9-a1K8s7N-YD9KR3Q4bD3d1H1-_fXc3PqvOL0w_zk_OqFYqqigktOGsYca3Q3LSiF1L3NWhDmWEdMy0DRxSjEox2CozSdc-gp5z2kkjH99HLrXed4rcN5GJXPrcwDC5A3GSruSCKEF5P5Kv_kpRQbaTUkk_o6y3apphzgt6uk1-5NE6QvV_GTsvYh2Um9sVOu2lW0P0ld1NMwPEWuPMDjP822Y_zt7-V1bYxvRe-_2m4dGuV5lraL59P7eUneXVWf1WW8l9qRafI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017955753</pqid></control><display><type>article</type><title>On the road to understanding of the osteoblast adhesion: Cytoskeleton organization is rearranged by distinct signaling pathways</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Zambuzzi, Willian Fernando ; Bruni-Cardoso, Alexandre ; Granjeiro, José Mauro ; Peppelenbosch, Maikel Petrus ; de Carvalho, Hernandes Faustino ; Aoyama, Hiroshi ; Ferreira, Carmen Veríssima</creator><creatorcontrib>Zambuzzi, Willian Fernando ; Bruni-Cardoso, Alexandre ; Granjeiro, José Mauro ; Peppelenbosch, Maikel Petrus ; de Carvalho, Hernandes Faustino ; Aoyama, Hiroshi ; Ferreira, Carmen Veríssima</creatorcontrib><description>Pre‐osteoblast adhesion attracts increasing interest in both medicine and dentistry. However, how this physiological event alters osteoblast phenotype is poorly understood. We therefore attempted to address this question by investigating key biochemical mechanism that governs pre‐osteoblast adhesion on polystyrene surface. Importantly, we found that cofilin activity was strongly modulated by PP2A (Ser/Thr phosphatase), while cell‐cycle was arrested. Accordingly, we observed that the profile of cofilin phosphorylation (at Ser03) was similar to phospho‐PP2A (at Tyr307). Also, it is plausible to suggest during pre‐osteoblast adhesion that PP2A phosphorylation at Y307 was executed by phospho‐Src (Y416). In addition, it was observed that MAPKp38, but not MAPK‐erk, played a key role on pre‐osteoblast adhesion by phosphorylating MAPKAPK‐2 and ATF‐2 (also called CRE‐BP1). Also, the up‐modulation of RhoA reported here suggests its involvement at the beginning of osteoblast attachment, while Akt remained active during all periods. Altogether, our results clearly showed that osteoblast adhesion is under an intricate network of signaling molecules, which are responsible to guide their interaction with substrate mainly via cytoskeleton rearrangement. J. Cell. Biochem. 108: 134–144, 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>ISSN: 1097-4644</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.22236</identifier><identifier>PMID: 19562668</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>actin ; Activating transcription factor 2 ; adhesion ; Akt ; AKT protein ; Animals ; Cell Adhesion ; Cell Cycle ; Cell Line ; Cofilin ; Cytoskeleton ; Cytoskeleton - metabolism ; Dentistry ; Intracellular Signaling Peptides and Proteins - metabolism ; MAPKp38 ; Mice ; Models, Biological ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Phosphorylation ; polystyrene ; PP2A ; pre-osteoblast ; Protein-Serine-Threonine Kinases - metabolism ; RhoA protein ; Signal Transduction ; Threonine - genetics ; Threonine - metabolism ; Tyrosine - genetics ; Tyrosine - metabolism</subject><ispartof>Journal of cellular biochemistry, 2009-09, Vol.108 (1), p.134-144</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>(c) 2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4616-247432b20ac4739c4f457f8e791292d29c2ea06215e97a6e9678f2ef131f505a3</citedby><cites>FETCH-LOGICAL-c4616-247432b20ac4739c4f457f8e791292d29c2ea06215e97a6e9678f2ef131f505a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.22236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.22236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19562668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zambuzzi, Willian Fernando</creatorcontrib><creatorcontrib>Bruni-Cardoso, Alexandre</creatorcontrib><creatorcontrib>Granjeiro, José Mauro</creatorcontrib><creatorcontrib>Peppelenbosch, Maikel Petrus</creatorcontrib><creatorcontrib>de Carvalho, Hernandes Faustino</creatorcontrib><creatorcontrib>Aoyama, Hiroshi</creatorcontrib><creatorcontrib>Ferreira, Carmen Veríssima</creatorcontrib><title>On the road to understanding of the osteoblast adhesion: Cytoskeleton organization is rearranged by distinct signaling pathways</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Pre‐osteoblast adhesion attracts increasing interest in both medicine and dentistry. However, how this physiological event alters osteoblast phenotype is poorly understood. We therefore attempted to address this question by investigating key biochemical mechanism that governs pre‐osteoblast adhesion on polystyrene surface. Importantly, we found that cofilin activity was strongly modulated by PP2A (Ser/Thr phosphatase), while cell‐cycle was arrested. Accordingly, we observed that the profile of cofilin phosphorylation (at Ser03) was similar to phospho‐PP2A (at Tyr307). Also, it is plausible to suggest during pre‐osteoblast adhesion that PP2A phosphorylation at Y307 was executed by phospho‐Src (Y416). In addition, it was observed that MAPKp38, but not MAPK‐erk, played a key role on pre‐osteoblast adhesion by phosphorylating MAPKAPK‐2 and ATF‐2 (also called CRE‐BP1). Also, the up‐modulation of RhoA reported here suggests its involvement at the beginning of osteoblast attachment, while Akt remained active during all periods. Altogether, our results clearly showed that osteoblast adhesion is under an intricate network of signaling molecules, which are responsible to guide their interaction with substrate mainly via cytoskeleton rearrangement. J. Cell. Biochem. 108: 134–144, 2009. © 2009 Wiley‐Liss, Inc.</description><subject>actin</subject><subject>Activating transcription factor 2</subject><subject>adhesion</subject><subject>Akt</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Cell Adhesion</subject><subject>Cell Cycle</subject><subject>Cell Line</subject><subject>Cofilin</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Dentistry</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MAPKp38</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Phosphorylation</subject><subject>polystyrene</subject><subject>PP2A</subject><subject>pre-osteoblast</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>RhoA protein</subject><subject>Signal Transduction</subject><subject>Threonine - genetics</subject><subject>Threonine - metabolism</subject><subject>Tyrosine - genetics</subject><subject>Tyrosine - metabolism</subject><issn>0730-2312</issn><issn>1097-4644</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1vFDEURS0EIkuSgj-A3AHFJP72mC6sIAEFIkWJoLM8M292nczai-1VGBr-OpPsAhVUr7jnnuJdhJ5TckQJYcc3bXPEGOPqEZpRYnQllBCP0YxoTirGKdtDz3K-IYQYw9lTtEeNVEypeoZ-XgRcloBTdB0uEW9CBykXFzofFjj2D2HMBWIzuFyw65aQfQxv8HwsMd_CACUGHNPCBf_DlSnCPuMELiUXFtDhZsSdz8WHtuDsF8EN9-a1K8s7N-YD9KR3Q4bD3d1H1-_fXc3PqvOL0w_zk_OqFYqqigktOGsYca3Q3LSiF1L3NWhDmWEdMy0DRxSjEox2CozSdc-gp5z2kkjH99HLrXed4rcN5GJXPrcwDC5A3GSruSCKEF5P5Kv_kpRQbaTUkk_o6y3apphzgt6uk1-5NE6QvV_GTsvYh2Um9sVOu2lW0P0ld1NMwPEWuPMDjP822Y_zt7-V1bYxvRe-_2m4dGuV5lraL59P7eUneXVWf1WW8l9qRafI</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Zambuzzi, Willian Fernando</creator><creator>Bruni-Cardoso, Alexandre</creator><creator>Granjeiro, José Mauro</creator><creator>Peppelenbosch, Maikel Petrus</creator><creator>de Carvalho, Hernandes Faustino</creator><creator>Aoyama, Hiroshi</creator><creator>Ferreira, Carmen Veríssima</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>On the road to understanding of the osteoblast adhesion: Cytoskeleton organization is rearranged by distinct signaling pathways</title><author>Zambuzzi, Willian Fernando ; Bruni-Cardoso, Alexandre ; Granjeiro, José Mauro ; Peppelenbosch, Maikel Petrus ; de Carvalho, Hernandes Faustino ; Aoyama, Hiroshi ; Ferreira, Carmen Veríssima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4616-247432b20ac4739c4f457f8e791292d29c2ea06215e97a6e9678f2ef131f505a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>actin</topic><topic>Activating transcription factor 2</topic><topic>adhesion</topic><topic>Akt</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Cell Adhesion</topic><topic>Cell Cycle</topic><topic>Cell Line</topic><topic>Cofilin</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Dentistry</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MAPKp38</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Phosphorylation</topic><topic>polystyrene</topic><topic>PP2A</topic><topic>pre-osteoblast</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>RhoA protein</topic><topic>Signal Transduction</topic><topic>Threonine - genetics</topic><topic>Threonine - metabolism</topic><topic>Tyrosine - genetics</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zambuzzi, Willian Fernando</creatorcontrib><creatorcontrib>Bruni-Cardoso, Alexandre</creatorcontrib><creatorcontrib>Granjeiro, José Mauro</creatorcontrib><creatorcontrib>Peppelenbosch, Maikel Petrus</creatorcontrib><creatorcontrib>de Carvalho, Hernandes Faustino</creatorcontrib><creatorcontrib>Aoyama, Hiroshi</creatorcontrib><creatorcontrib>Ferreira, Carmen Veríssima</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zambuzzi, Willian Fernando</au><au>Bruni-Cardoso, Alexandre</au><au>Granjeiro, José Mauro</au><au>Peppelenbosch, Maikel Petrus</au><au>de Carvalho, Hernandes Faustino</au><au>Aoyama, Hiroshi</au><au>Ferreira, Carmen Veríssima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the road to understanding of the osteoblast adhesion: Cytoskeleton organization is rearranged by distinct signaling pathways</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>108</volume><issue>1</issue><spage>134</spage><epage>144</epage><pages>134-144</pages><issn>0730-2312</issn><issn>1097-4644</issn><eissn>1097-4644</eissn><abstract>Pre‐osteoblast adhesion attracts increasing interest in both medicine and dentistry. However, how this physiological event alters osteoblast phenotype is poorly understood. We therefore attempted to address this question by investigating key biochemical mechanism that governs pre‐osteoblast adhesion on polystyrene surface. Importantly, we found that cofilin activity was strongly modulated by PP2A (Ser/Thr phosphatase), while cell‐cycle was arrested. Accordingly, we observed that the profile of cofilin phosphorylation (at Ser03) was similar to phospho‐PP2A (at Tyr307). Also, it is plausible to suggest during pre‐osteoblast adhesion that PP2A phosphorylation at Y307 was executed by phospho‐Src (Y416). In addition, it was observed that MAPKp38, but not MAPK‐erk, played a key role on pre‐osteoblast adhesion by phosphorylating MAPKAPK‐2 and ATF‐2 (also called CRE‐BP1). Also, the up‐modulation of RhoA reported here suggests its involvement at the beginning of osteoblast attachment, while Akt remained active during all periods. Altogether, our results clearly showed that osteoblast adhesion is under an intricate network of signaling molecules, which are responsible to guide their interaction with substrate mainly via cytoskeleton rearrangement. J. Cell. Biochem. 108: 134–144, 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19562668</pmid><doi>10.1002/jcb.22236</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2009-09, Vol.108 (1), p.134-144 |
issn | 0730-2312 1097-4644 1097-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_734060038 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | actin Activating transcription factor 2 adhesion Akt AKT protein Animals Cell Adhesion Cell Cycle Cell Line Cofilin Cytoskeleton Cytoskeleton - metabolism Dentistry Intracellular Signaling Peptides and Proteins - metabolism MAPKp38 Mice Models, Biological Osteoblasts Osteoblasts - cytology Osteoblasts - metabolism Phosphorylation polystyrene PP2A pre-osteoblast Protein-Serine-Threonine Kinases - metabolism RhoA protein Signal Transduction Threonine - genetics Threonine - metabolism Tyrosine - genetics Tyrosine - metabolism |
title | On the road to understanding of the osteoblast adhesion: Cytoskeleton organization is rearranged by distinct signaling pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20road%20to%20understanding%20of%20the%20osteoblast%20adhesion:%20Cytoskeleton%20organization%20is%20rearranged%20by%20distinct%20signaling%20pathways&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Zambuzzi,%20Willian%20Fernando&rft.date=2009-09-01&rft.volume=108&rft.issue=1&rft.spage=134&rft.epage=144&rft.pages=134-144&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.22236&rft_dat=%3Cproquest_cross%3E1017955753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017955753&rft_id=info:pmid/19562668&rfr_iscdi=true |