Intermolecular Proton Transfer in Microhydrated Guanine−Cytosine Base Pairs: a New Mechanism for Spontaneous Mutation in DNA

Accurate calculations of the double proton transfer (DPT) in the adenine−thymine base pair (AT) were presented in a previous work [ J. Phys. Chem. A 2009, 113, 7892. ] where we demonstrated that the mechanism of the reaction in solution is strongly affected by surrounding water. Here we extend our m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2009-10, Vol.113 (39), p.10549-10556
Hauptverfasser: Cerón-Carrasco, J. P, Requena, A, Zúñiga, J, Michaux, C, Perpète, E. A, Jacquemin, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate calculations of the double proton transfer (DPT) in the adenine−thymine base pair (AT) were presented in a previous work [ J. Phys. Chem. A 2009, 113, 7892. ] where we demonstrated that the mechanism of the reaction in solution is strongly affected by surrounding water. Here we extend our methodology to the guanine−cytosine base pair (GC), for which it turns out that the proton transfer in the gas phase is a synchronous concerted mechanism. The O(G)−H−N(C) hydrogen bond strength emerges as the key parameter in this process, to the extent that complete transfer takes place by means of this hydrogen bond. Since the main effect of the molecular environment is precisely to weaken this bond, the direct proton transfer is not possible in solution, and thus the tautomeric equilibrium must be assisted by surrounding water molecules in an asynchronous concerted mechanism. This result demonstrates that water plays a crucial role in proton reactions. It does not act as a passive element but actually catalyzes the DPT.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp906551f