Folding of a SH3 Domain: Standard and “Hydrodynamic” Analyses

Discrete molecular dynamics has been used to study the folding of a SH3 domain with a Cα-based Go̅-model at a temperature within the native state stability region. A standard analysis of the folding process, based on consideration of the mean-force (free energy) surfaces, contact maps and folding ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2009-09, Vol.113 (38), p.12759-12772
Hauptverfasser: Kalgin, Igor V, Karplus, Martin, Chekmarev, Sergei F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12772
container_issue 38
container_start_page 12759
container_title The journal of physical chemistry. B
container_volume 113
creator Kalgin, Igor V
Karplus, Martin
Chekmarev, Sergei F
description Discrete molecular dynamics has been used to study the folding of a SH3 domain with a Cα-based Go̅-model at a temperature within the native state stability region. A standard analysis of the folding process, based on consideration of the mean-force (free energy) surfaces, contact maps and folding time distributions, is complemented by a “hydrodynamic” description of folding flows (Chekmarev et al., PRL, 2008, 018107) using two and three collective variables. Two types of folding trajectories (fast and slow) follow essentially different routes in the final stage of folding. The hydrodynamic description makes possible the calculation of folding flows corresponding to these routes. The results show that the probability flows do not correspond to the free energy surface and that vortex formation is involved in the slow trajectories. Comparison of the simulation results with the experimental data suggests that the two-state kinetics observed for Fyn and Src SH3 domain folding are associated with the slow trajectories, in which a partly formed N- and C-terminal β sheet hinders the RT-loop from attaching to the protein core; the fast trajectories are not observed because they are in the dead time (1 ms) of the experiments.
doi_str_mv 10.1021/jp903325z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734051133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734051133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-33d7eb5775ab627a3a5154c8e4d30e4b2d23a3851f93c53d30563d46c687d4173</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EoqUw8ALIC0IMAdsX2wlbVChFqsRQmCMndlCqJC52M4SpDwIv1ychqBEsDKf_dPr0S_chdE7JDSWM3q7WMQFg_OMAjSlnJOhHHg67oESM0In3K0IYZ5E4RiMaS0pjLsYomdlKl80btgVWeDkHfG9rVTZ3eLlRjVZO4z7wbvs577SzumtUXea77RdOGlV13vhTdFSoypuzISfodfbwMp0Hi-fHp2myCBTQcBMAaGkyLiVXmWBSgeKUh3lkQg3EhBnTDBREnBYx5Bz6IxegQ5GLSOqQSpigq33v2tn31vhNWpc-N1WlGmNbn0oICacUoCev92TurPfOFOnalbVyXUpJ-iMs_RXWsxdDa5vVRv-Rg6EeuNwDKvfpyrauf9v_U_QNGv5xAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734051133</pqid></control><display><type>article</type><title>Folding of a SH3 Domain: Standard and “Hydrodynamic” Analyses</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kalgin, Igor V ; Karplus, Martin ; Chekmarev, Sergei F</creator><creatorcontrib>Kalgin, Igor V ; Karplus, Martin ; Chekmarev, Sergei F</creatorcontrib><description>Discrete molecular dynamics has been used to study the folding of a SH3 domain with a Cα-based Go̅-model at a temperature within the native state stability region. A standard analysis of the folding process, based on consideration of the mean-force (free energy) surfaces, contact maps and folding time distributions, is complemented by a “hydrodynamic” description of folding flows (Chekmarev et al., PRL, 2008, 018107) using two and three collective variables. Two types of folding trajectories (fast and slow) follow essentially different routes in the final stage of folding. The hydrodynamic description makes possible the calculation of folding flows corresponding to these routes. The results show that the probability flows do not correspond to the free energy surface and that vortex formation is involved in the slow trajectories. Comparison of the simulation results with the experimental data suggests that the two-state kinetics observed for Fyn and Src SH3 domain folding are associated with the slow trajectories, in which a partly formed N- and C-terminal β sheet hinders the RT-loop from attaching to the protein core; the fast trajectories are not observed because they are in the dead time (1 ms) of the experiments.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp903325z</identifier><identifier>PMID: 19711956</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysical Chemistry ; Computer Simulation ; Models, Chemical ; Protein Folding ; src Homology Domains - physiology ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2009-09, Vol.113 (38), p.12759-12772</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-33d7eb5775ab627a3a5154c8e4d30e4b2d23a3851f93c53d30563d46c687d4173</citedby><cites>FETCH-LOGICAL-a314t-33d7eb5775ab627a3a5154c8e4d30e4b2d23a3851f93c53d30563d46c687d4173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp903325z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp903325z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19711956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalgin, Igor V</creatorcontrib><creatorcontrib>Karplus, Martin</creatorcontrib><creatorcontrib>Chekmarev, Sergei F</creatorcontrib><title>Folding of a SH3 Domain: Standard and “Hydrodynamic” Analyses</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Discrete molecular dynamics has been used to study the folding of a SH3 domain with a Cα-based Go̅-model at a temperature within the native state stability region. A standard analysis of the folding process, based on consideration of the mean-force (free energy) surfaces, contact maps and folding time distributions, is complemented by a “hydrodynamic” description of folding flows (Chekmarev et al., PRL, 2008, 018107) using two and three collective variables. Two types of folding trajectories (fast and slow) follow essentially different routes in the final stage of folding. The hydrodynamic description makes possible the calculation of folding flows corresponding to these routes. The results show that the probability flows do not correspond to the free energy surface and that vortex formation is involved in the slow trajectories. Comparison of the simulation results with the experimental data suggests that the two-state kinetics observed for Fyn and Src SH3 domain folding are associated with the slow trajectories, in which a partly formed N- and C-terminal β sheet hinders the RT-loop from attaching to the protein core; the fast trajectories are not observed because they are in the dead time (1 ms) of the experiments.</description><subject>B: Biophysical Chemistry</subject><subject>Computer Simulation</subject><subject>Models, Chemical</subject><subject>Protein Folding</subject><subject>src Homology Domains - physiology</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLFOwzAQhi0EoqUw8ALIC0IMAdsX2wlbVChFqsRQmCMndlCqJC52M4SpDwIv1ychqBEsDKf_dPr0S_chdE7JDSWM3q7WMQFg_OMAjSlnJOhHHg67oESM0In3K0IYZ5E4RiMaS0pjLsYomdlKl80btgVWeDkHfG9rVTZ3eLlRjVZO4z7wbvs577SzumtUXea77RdOGlV13vhTdFSoypuzISfodfbwMp0Hi-fHp2myCBTQcBMAaGkyLiVXmWBSgeKUh3lkQg3EhBnTDBREnBYx5Bz6IxegQ5GLSOqQSpigq33v2tn31vhNWpc-N1WlGmNbn0oICacUoCev92TurPfOFOnalbVyXUpJ-iMs_RXWsxdDa5vVRv-Rg6EeuNwDKvfpyrauf9v_U_QNGv5xAg</recordid><startdate>20090924</startdate><enddate>20090924</enddate><creator>Kalgin, Igor V</creator><creator>Karplus, Martin</creator><creator>Chekmarev, Sergei F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090924</creationdate><title>Folding of a SH3 Domain: Standard and “Hydrodynamic” Analyses</title><author>Kalgin, Igor V ; Karplus, Martin ; Chekmarev, Sergei F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-33d7eb5775ab627a3a5154c8e4d30e4b2d23a3851f93c53d30563d46c687d4173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>B: Biophysical Chemistry</topic><topic>Computer Simulation</topic><topic>Models, Chemical</topic><topic>Protein Folding</topic><topic>src Homology Domains - physiology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalgin, Igor V</creatorcontrib><creatorcontrib>Karplus, Martin</creatorcontrib><creatorcontrib>Chekmarev, Sergei F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalgin, Igor V</au><au>Karplus, Martin</au><au>Chekmarev, Sergei F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding of a SH3 Domain: Standard and “Hydrodynamic” Analyses</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2009-09-24</date><risdate>2009</risdate><volume>113</volume><issue>38</issue><spage>12759</spage><epage>12772</epage><pages>12759-12772</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Discrete molecular dynamics has been used to study the folding of a SH3 domain with a Cα-based Go̅-model at a temperature within the native state stability region. A standard analysis of the folding process, based on consideration of the mean-force (free energy) surfaces, contact maps and folding time distributions, is complemented by a “hydrodynamic” description of folding flows (Chekmarev et al., PRL, 2008, 018107) using two and three collective variables. Two types of folding trajectories (fast and slow) follow essentially different routes in the final stage of folding. The hydrodynamic description makes possible the calculation of folding flows corresponding to these routes. The results show that the probability flows do not correspond to the free energy surface and that vortex formation is involved in the slow trajectories. Comparison of the simulation results with the experimental data suggests that the two-state kinetics observed for Fyn and Src SH3 domain folding are associated with the slow trajectories, in which a partly formed N- and C-terminal β sheet hinders the RT-loop from attaching to the protein core; the fast trajectories are not observed because they are in the dead time (1 ms) of the experiments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19711956</pmid><doi>10.1021/jp903325z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2009-09, Vol.113 (38), p.12759-12772
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_734051133
source MEDLINE; ACS Publications
subjects B: Biophysical Chemistry
Computer Simulation
Models, Chemical
Protein Folding
src Homology Domains - physiology
Thermodynamics
title Folding of a SH3 Domain: Standard and “Hydrodynamic” Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20of%20a%20SH3%20Domain:%20Standard%20and%20%E2%80%9CHydrodynamic%E2%80%9D%20Analyses&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Kalgin,%20Igor%20V&rft.date=2009-09-24&rft.volume=113&rft.issue=38&rft.spage=12759&rft.epage=12772&rft.pages=12759-12772&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp903325z&rft_dat=%3Cproquest_cross%3E734051133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734051133&rft_id=info:pmid/19711956&rfr_iscdi=true