Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control

In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2009-10, Vol.260 (4), p.502-509
Hauptverfasser: Guo, Hongjian, Chen, Lansun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 4
container_start_page 502
container_title Journal of theoretical biology
container_volume 260
creator Guo, Hongjian
Chen, Lansun
description In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.
doi_str_mv 10.1016/j.jtbi.2009.07.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734050892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519309003208</els_id><sourcerecordid>734050892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7uzqH_AgOemp23x3Al5kUVdY0YOeQzqpdjN2d8YkvYv_3gwz4G1PRcHzvgX1IPSKkp4Sqt7t-30dY88IMT0ZekKGJ2hHiZGdloI-RTtCGOskNfwCXZayJw0UXD1HF9QoKrkmOzR-hxxTiB6XNG81phWnCTvs72BJpbqKlxRgxg-x3uGvaU0B_8rpoS3ZVcBuDTguh20u8R7wkQc8AYTR-d_Yp7XmNL9AzyY3F3h5nlfo56ePP65vuttvn79cf7jtPNeqdl4boMpQZ5x3mgmtBzcNRiuthGOKKaGMHkcIxBhDJxiEGLiapJRcSBUCv0JvT72HnP5sUKpdYvEwz26FtBU7cEEk0YY18s2jJKOMt8umgewE-pxKyTDZQ46Ly38tJfbowO7t0YE9OrBksM1BC70-t2_jAuF_5Pz0Brw_AdC-cR8h2-IjrB5CzOCrDSk-1v8PTcOX5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21237989</pqid></control><display><type>article</type><title>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Guo, Hongjian ; Chen, Lansun</creator><creatorcontrib>Guo, Hongjian ; Chen, Lansun</creatorcontrib><description>In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2009.07.007</identifier><identifier>PMID: 19615380</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria - growth &amp; development ; Bioreactors ; Continuous culture ; Feedback, Physiological ; Impulsive autonomous system ; Impulsive control ; Microbiological Techniques - methods ; Microorganism ; Models, Biological ; Periodic solution of order one ; Periodicity</subject><ispartof>Journal of theoretical biology, 2009-10, Vol.260 (4), p.502-509</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</citedby><cites>FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519309003208$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19615380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Chen, Lansun</creatorcontrib><title>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.</description><subject>Bacteria - growth &amp; development</subject><subject>Bioreactors</subject><subject>Continuous culture</subject><subject>Feedback, Physiological</subject><subject>Impulsive autonomous system</subject><subject>Impulsive control</subject><subject>Microbiological Techniques - methods</subject><subject>Microorganism</subject><subject>Models, Biological</subject><subject>Periodic solution of order one</subject><subject>Periodicity</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7uzqH_AgOemp23x3Al5kUVdY0YOeQzqpdjN2d8YkvYv_3gwz4G1PRcHzvgX1IPSKkp4Sqt7t-30dY88IMT0ZekKGJ2hHiZGdloI-RTtCGOskNfwCXZayJw0UXD1HF9QoKrkmOzR-hxxTiB6XNG81phWnCTvs72BJpbqKlxRgxg-x3uGvaU0B_8rpoS3ZVcBuDTguh20u8R7wkQc8AYTR-d_Yp7XmNL9AzyY3F3h5nlfo56ePP65vuttvn79cf7jtPNeqdl4boMpQZ5x3mgmtBzcNRiuthGOKKaGMHkcIxBhDJxiEGLiapJRcSBUCv0JvT72HnP5sUKpdYvEwz26FtBU7cEEk0YY18s2jJKOMt8umgewE-pxKyTDZQ46Ly38tJfbowO7t0YE9OrBksM1BC70-t2_jAuF_5Pz0Brw_AdC-cR8h2-IjrB5CzOCrDSk-1v8PTcOX5g</recordid><startdate>20091021</startdate><enddate>20091021</enddate><creator>Guo, Hongjian</creator><creator>Chen, Lansun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20091021</creationdate><title>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</title><author>Guo, Hongjian ; Chen, Lansun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria - growth &amp; development</topic><topic>Bioreactors</topic><topic>Continuous culture</topic><topic>Feedback, Physiological</topic><topic>Impulsive autonomous system</topic><topic>Impulsive control</topic><topic>Microbiological Techniques - methods</topic><topic>Microorganism</topic><topic>Models, Biological</topic><topic>Periodic solution of order one</topic><topic>Periodicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Chen, Lansun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongjian</au><au>Chen, Lansun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-10-21</date><risdate>2009</risdate><volume>260</volume><issue>4</issue><spage>502</spage><epage>509</epage><pages>502-509</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19615380</pmid><doi>10.1016/j.jtbi.2009.07.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2009-10, Vol.260 (4), p.502-509
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_734050892
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Bacteria - growth & development
Bioreactors
Continuous culture
Feedback, Physiological
Impulsive autonomous system
Impulsive control
Microbiological Techniques - methods
Microorganism
Models, Biological
Periodic solution of order one
Periodicity
title Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20solution%20of%20a%20chemostat%20model%20with%20Monod%20growth%20rate%20and%20impulsive%20state%20feedback%20control&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Guo,%20Hongjian&rft.date=2009-10-21&rft.volume=260&rft.issue=4&rft.spage=502&rft.epage=509&rft.pages=502-509&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2009.07.007&rft_dat=%3Cproquest_cross%3E734050892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21237989&rft_id=info:pmid/19615380&rft_els_id=S0022519309003208&rfr_iscdi=true