Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control
In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodi...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2009-10, Vol.260 (4), p.502-509 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | 4 |
container_start_page | 502 |
container_title | Journal of theoretical biology |
container_volume | 260 |
creator | Guo, Hongjian Chen, Lansun |
description | In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate. |
doi_str_mv | 10.1016/j.jtbi.2009.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734050892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519309003208</els_id><sourcerecordid>734050892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7uzqH_AgOemp23x3Al5kUVdY0YOeQzqpdjN2d8YkvYv_3gwz4G1PRcHzvgX1IPSKkp4Sqt7t-30dY88IMT0ZekKGJ2hHiZGdloI-RTtCGOskNfwCXZayJw0UXD1HF9QoKrkmOzR-hxxTiB6XNG81phWnCTvs72BJpbqKlxRgxg-x3uGvaU0B_8rpoS3ZVcBuDTguh20u8R7wkQc8AYTR-d_Yp7XmNL9AzyY3F3h5nlfo56ePP65vuttvn79cf7jtPNeqdl4boMpQZ5x3mgmtBzcNRiuthGOKKaGMHkcIxBhDJxiEGLiapJRcSBUCv0JvT72HnP5sUKpdYvEwz26FtBU7cEEk0YY18s2jJKOMt8umgewE-pxKyTDZQ46Ly38tJfbowO7t0YE9OrBksM1BC70-t2_jAuF_5Pz0Brw_AdC-cR8h2-IjrB5CzOCrDSk-1v8PTcOX5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21237989</pqid></control><display><type>article</type><title>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Guo, Hongjian ; Chen, Lansun</creator><creatorcontrib>Guo, Hongjian ; Chen, Lansun</creatorcontrib><description>In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2009.07.007</identifier><identifier>PMID: 19615380</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria - growth & development ; Bioreactors ; Continuous culture ; Feedback, Physiological ; Impulsive autonomous system ; Impulsive control ; Microbiological Techniques - methods ; Microorganism ; Models, Biological ; Periodic solution of order one ; Periodicity</subject><ispartof>Journal of theoretical biology, 2009-10, Vol.260 (4), p.502-509</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</citedby><cites>FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519309003208$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19615380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Chen, Lansun</creatorcontrib><title>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.</description><subject>Bacteria - growth & development</subject><subject>Bioreactors</subject><subject>Continuous culture</subject><subject>Feedback, Physiological</subject><subject>Impulsive autonomous system</subject><subject>Impulsive control</subject><subject>Microbiological Techniques - methods</subject><subject>Microorganism</subject><subject>Models, Biological</subject><subject>Periodic solution of order one</subject><subject>Periodicity</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7uzqH_AgOemp23x3Al5kUVdY0YOeQzqpdjN2d8YkvYv_3gwz4G1PRcHzvgX1IPSKkp4Sqt7t-30dY88IMT0ZekKGJ2hHiZGdloI-RTtCGOskNfwCXZayJw0UXD1HF9QoKrkmOzR-hxxTiB6XNG81phWnCTvs72BJpbqKlxRgxg-x3uGvaU0B_8rpoS3ZVcBuDTguh20u8R7wkQc8AYTR-d_Yp7XmNL9AzyY3F3h5nlfo56ePP65vuttvn79cf7jtPNeqdl4boMpQZ5x3mgmtBzcNRiuthGOKKaGMHkcIxBhDJxiEGLiapJRcSBUCv0JvT72HnP5sUKpdYvEwz26FtBU7cEEk0YY18s2jJKOMt8umgewE-pxKyTDZQ46Ly38tJfbowO7t0YE9OrBksM1BC70-t2_jAuF_5Pz0Brw_AdC-cR8h2-IjrB5CzOCrDSk-1v8PTcOX5g</recordid><startdate>20091021</startdate><enddate>20091021</enddate><creator>Guo, Hongjian</creator><creator>Chen, Lansun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20091021</creationdate><title>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</title><author>Guo, Hongjian ; Chen, Lansun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c89e1691a9aca824887af7986864a26264698bbed09991fe744736f5553456dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria - growth & development</topic><topic>Bioreactors</topic><topic>Continuous culture</topic><topic>Feedback, Physiological</topic><topic>Impulsive autonomous system</topic><topic>Impulsive control</topic><topic>Microbiological Techniques - methods</topic><topic>Microorganism</topic><topic>Models, Biological</topic><topic>Periodic solution of order one</topic><topic>Periodicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Chen, Lansun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongjian</au><au>Chen, Lansun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-10-21</date><risdate>2009</risdate><volume>260</volume><issue>4</issue><spage>502</spage><epage>509</epage><pages>502-509</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19615380</pmid><doi>10.1016/j.jtbi.2009.07.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2009-10, Vol.260 (4), p.502-509 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_734050892 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Bacteria - growth & development Bioreactors Continuous culture Feedback, Physiological Impulsive autonomous system Impulsive control Microbiological Techniques - methods Microorganism Models, Biological Periodic solution of order one Periodicity |
title | Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20solution%20of%20a%20chemostat%20model%20with%20Monod%20growth%20rate%20and%20impulsive%20state%20feedback%20control&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Guo,%20Hongjian&rft.date=2009-10-21&rft.volume=260&rft.issue=4&rft.spage=502&rft.epage=509&rft.pages=502-509&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2009.07.007&rft_dat=%3Cproquest_cross%3E734050892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21237989&rft_id=info:pmid/19615380&rft_els_id=S0022519309003208&rfr_iscdi=true |