Energy driven self-organization in nanoscale metallic liquid films
Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2009-01, Vol.11 (37), p.8136-8143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8143 |
---|---|
container_issue | 37 |
container_start_page | 8136 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 11 |
creator | KRISHNA, H SHIRATO, N FAVAZZA, C KALYANARAMAN, R |
description | Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important. |
doi_str_mv | 10.1039/b906281p |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734048739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734048739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</originalsourceid><addsrcrecordid>eNpF0E9LwzAYx_EgiptT8BVIL6KXap6kbZqjjvkHBl70XNL0yYik6Zaswnz1dqzq6XkOH36HLyGXQO-AcnlfS1qwEtZHZApZwVNJy-z47xfFhJzF-EkphRz4KZmAFHnBinJKHhcew2qXNMF-oU8iOpN2YaW8_VZb2_nE-sQr30WtHCYtbpVzVifObnrbJMa6Np6TE6NcxIvxzsjH0-J9_pIu355f5w_LVHNg21RwoLrMMykzqtVwMUed14CQZ7URxkglygZZqU1mgBV1TQXLNaMcdMM18hm5OeyuQ7fpMW6r1kaNzimPXR8rwTOalYLLQd4epA5djAFNtQ62VWFXAa32warfYAO9Gkf7usXmH46FBnA9ArVvYILy2sY_xxhlFCTwH2iscmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734048739</pqid></control><display><type>article</type><title>Energy driven self-organization in nanoscale metallic liquid films</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>KRISHNA, H ; SHIRATO, N ; FAVAZZA, C ; KALYANARAMAN, R</creator><creatorcontrib>KRISHNA, H ; SHIRATO, N ; FAVAZZA, C ; KALYANARAMAN, R</creatorcontrib><description>Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/b906281p</identifier><identifier>PMID: 19756268</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2009-01, Vol.11 (37), p.8136-8143</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</citedby><cites>FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22020191$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19756268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KRISHNA, H</creatorcontrib><creatorcontrib>SHIRATO, N</creatorcontrib><creatorcontrib>FAVAZZA, C</creatorcontrib><creatorcontrib>KALYANARAMAN, R</creatorcontrib><title>Energy driven self-organization in nanoscale metallic liquid films</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpF0E9LwzAYx_EgiptT8BVIL6KXap6kbZqjjvkHBl70XNL0yYik6Zaswnz1dqzq6XkOH36HLyGXQO-AcnlfS1qwEtZHZApZwVNJy-z47xfFhJzF-EkphRz4KZmAFHnBinJKHhcew2qXNMF-oU8iOpN2YaW8_VZb2_nE-sQr30WtHCYtbpVzVifObnrbJMa6Np6TE6NcxIvxzsjH0-J9_pIu355f5w_LVHNg21RwoLrMMykzqtVwMUed14CQZ7URxkglygZZqU1mgBV1TQXLNaMcdMM18hm5OeyuQ7fpMW6r1kaNzimPXR8rwTOalYLLQd4epA5djAFNtQ62VWFXAa32warfYAO9Gkf7usXmH46FBnA9ArVvYILy2sY_xxhlFCTwH2iscmQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>KRISHNA, H</creator><creator>SHIRATO, N</creator><creator>FAVAZZA, C</creator><creator>KALYANARAMAN, R</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Energy driven self-organization in nanoscale metallic liquid films</title><author>KRISHNA, H ; SHIRATO, N ; FAVAZZA, C ; KALYANARAMAN, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KRISHNA, H</creatorcontrib><creatorcontrib>SHIRATO, N</creatorcontrib><creatorcontrib>FAVAZZA, C</creatorcontrib><creatorcontrib>KALYANARAMAN, R</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KRISHNA, H</au><au>SHIRATO, N</au><au>FAVAZZA, C</au><au>KALYANARAMAN, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy driven self-organization in nanoscale metallic liquid films</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>11</volume><issue>37</issue><spage>8136</spage><epage>8143</epage><pages>8136-8143</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>19756268</pmid><doi>10.1039/b906281p</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2009-01, Vol.11 (37), p.8136-8143 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_734048739 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemistry Exact sciences and technology General and physical chemistry |
title | Energy driven self-organization in nanoscale metallic liquid films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20driven%20self-organization%20in%20nanoscale%20metallic%20liquid%20films&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=KRISHNA,%20H&rft.date=2009-01-01&rft.volume=11&rft.issue=37&rft.spage=8136&rft.epage=8143&rft.pages=8136-8143&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/b906281p&rft_dat=%3Cproquest_cross%3E734048739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734048739&rft_id=info:pmid/19756268&rfr_iscdi=true |