Energy driven self-organization in nanoscale metallic liquid films

Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2009-01, Vol.11 (37), p.8136-8143
Hauptverfasser: KRISHNA, H, SHIRATO, N, FAVAZZA, C, KALYANARAMAN, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8143
container_issue 37
container_start_page 8136
container_title Physical chemistry chemical physics : PCCP
container_volume 11
creator KRISHNA, H
SHIRATO, N
FAVAZZA, C
KALYANARAMAN, R
description Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.
doi_str_mv 10.1039/b906281p
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734048739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734048739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</originalsourceid><addsrcrecordid>eNpF0E9LwzAYx_EgiptT8BVIL6KXap6kbZqjjvkHBl70XNL0yYik6Zaswnz1dqzq6XkOH36HLyGXQO-AcnlfS1qwEtZHZApZwVNJy-z47xfFhJzF-EkphRz4KZmAFHnBinJKHhcew2qXNMF-oU8iOpN2YaW8_VZb2_nE-sQr30WtHCYtbpVzVifObnrbJMa6Np6TE6NcxIvxzsjH0-J9_pIu355f5w_LVHNg21RwoLrMMykzqtVwMUed14CQZ7URxkglygZZqU1mgBV1TQXLNaMcdMM18hm5OeyuQ7fpMW6r1kaNzimPXR8rwTOalYLLQd4epA5djAFNtQ62VWFXAa32warfYAO9Gkf7usXmH46FBnA9ArVvYILy2sY_xxhlFCTwH2iscmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734048739</pqid></control><display><type>article</type><title>Energy driven self-organization in nanoscale metallic liquid films</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>KRISHNA, H ; SHIRATO, N ; FAVAZZA, C ; KALYANARAMAN, R</creator><creatorcontrib>KRISHNA, H ; SHIRATO, N ; FAVAZZA, C ; KALYANARAMAN, R</creatorcontrib><description>Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/b906281p</identifier><identifier>PMID: 19756268</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2009-01, Vol.11 (37), p.8136-8143</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</citedby><cites>FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22020191$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19756268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KRISHNA, H</creatorcontrib><creatorcontrib>SHIRATO, N</creatorcontrib><creatorcontrib>FAVAZZA, C</creatorcontrib><creatorcontrib>KALYANARAMAN, R</creatorcontrib><title>Energy driven self-organization in nanoscale metallic liquid films</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpF0E9LwzAYx_EgiptT8BVIL6KXap6kbZqjjvkHBl70XNL0yYik6Zaswnz1dqzq6XkOH36HLyGXQO-AcnlfS1qwEtZHZApZwVNJy-z47xfFhJzF-EkphRz4KZmAFHnBinJKHhcew2qXNMF-oU8iOpN2YaW8_VZb2_nE-sQr30WtHCYtbpVzVifObnrbJMa6Np6TE6NcxIvxzsjH0-J9_pIu355f5w_LVHNg21RwoLrMMykzqtVwMUed14CQZ7URxkglygZZqU1mgBV1TQXLNaMcdMM18hm5OeyuQ7fpMW6r1kaNzimPXR8rwTOalYLLQd4epA5djAFNtQ62VWFXAa32warfYAO9Gkf7usXmH46FBnA9ArVvYILy2sY_xxhlFCTwH2iscmQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>KRISHNA, H</creator><creator>SHIRATO, N</creator><creator>FAVAZZA, C</creator><creator>KALYANARAMAN, R</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Energy driven self-organization in nanoscale metallic liquid films</title><author>KRISHNA, H ; SHIRATO, N ; FAVAZZA, C ; KALYANARAMAN, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-7310c8549940ca549e5ec5b1e154bf7ff9a78de28cf4f126bb0725c2031cd3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KRISHNA, H</creatorcontrib><creatorcontrib>SHIRATO, N</creatorcontrib><creatorcontrib>FAVAZZA, C</creatorcontrib><creatorcontrib>KALYANARAMAN, R</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KRISHNA, H</au><au>SHIRATO, N</au><au>FAVAZZA, C</au><au>KALYANARAMAN, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy driven self-organization in nanoscale metallic liquid films</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>11</volume><issue>37</issue><spage>8136</spage><epage>8143</epage><pages>8136-8143</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>19756268</pmid><doi>10.1039/b906281p</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2009-01, Vol.11 (37), p.8136-8143
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_734048739
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Exact sciences and technology
General and physical chemistry
title Energy driven self-organization in nanoscale metallic liquid films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20driven%20self-organization%20in%20nanoscale%20metallic%20liquid%20films&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=KRISHNA,%20H&rft.date=2009-01-01&rft.volume=11&rft.issue=37&rft.spage=8136&rft.epage=8143&rft.pages=8136-8143&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/b906281p&rft_dat=%3Cproquest_cross%3E734048739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734048739&rft_id=info:pmid/19756268&rfr_iscdi=true