Nitric oxide photorelease from hydrogels and from skin containing a nitro-ruthenium complex

Nitric oxide (NO) is a gaseous molecule that has specific functions dictated by its localization and its kinetics of release. As NO-donors have a range of potential uses in the skin, much attention has been paid to the development of topical NO delivery systems. The aim of this work was to study the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2010-05, Vol.391 (1), p.21-28
Hauptverfasser: de Santana, Danielle Cristine Almeida Silva, Pupo, Thais Tallarico, Sauaia, Marília Gama, da Silva, Roberto Santana, Lopez, Renata Fonseca Vianna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide (NO) is a gaseous molecule that has specific functions dictated by its localization and its kinetics of release. As NO-donors have a range of potential uses in the skin, much attention has been paid to the development of topical NO delivery systems. The aim of this work was to study the release rate and the skin penetration of the NO-donor cis-[Ru(NO 2)(bpy) 2(4-pic)] + from different gel formulations and their potential as topical NO delivery systems under light stimuli. Among the formulations developed, the anionic gel retarded the nitro-ruthenium complex diffusion and also obstructed NO release after light irradiation. On the other hand, NO release before light irradiation was observed when the complex was dispersed in the cationic chitosan gel, possibly due to oxi-redox reactions between the amino groups of the polymer and the drug molecule. Finally, the non-ionic gel released the NO after light irradiation to the same extent as a drug aqueous solution at the same pH. The drug dispersed in this gel also penetrated into the stratum corneum skin layer, and the nitro-ruthenium complex present in the skin was able to release the NO after light stimuli, suggesting the potential use of this formulation as a topical NO delivery system.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2010.02.010