Optimal control strategy for prevention of avian influenza pandemic
The spread of H5N1 virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. Although, fortunately, sustained human-to-human transmissions have not been reported yet, it is said that a pandemic virus which can be easily transmitted among humans certainly emerg...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2009-09, Vol.260 (2), p.220-229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 2 |
container_start_page | 220 |
container_title | Journal of theoretical biology |
container_volume | 260 |
creator | Jung, Eunok Iwami, Shingo Takeuchi, Yasuhiro Jo, Tae-Chang |
description | The spread of H5N1 virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. Although, fortunately, sustained human-to-human transmissions have not been reported yet, it is said that a pandemic virus which can be easily transmitted among humans certainly emerges in the future. In this study, we extended the previous studies for the prevention of the pandemic influenza to evaluate the time-dependent optimal prevention policies, which are associated with elimination policy and quarantine policy, considering its execution cost. Actually, the execution cost affects the optimal strategy of prevention policies and the prevention of the disease spread. We found that the quarantine policy is very important rather than the elimination policy during the disease spread, even if the unit execution cost of the quarantine policy is more expensive than that of the elimination policy. And also, the change of the unit execution cost does affect the total cumulative cost of the optimal prevention policies but does not affect the relative frequency of each cumulative execution cost. Furthermore, interestingly, we revealed that an optimal strategy to reduce the number of total infected humans might increase a chance of invadability of the mutant influenza. |
doi_str_mv | 10.1016/j.jtbi.2009.05.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734019387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519309002550</els_id><sourcerecordid>20701627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6a5239a2ce1b54ba17c93dde78e9528f261db6751bee953a2cac32cda90480683</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlb_gAuZla5mvEkm8wA3UnyB4EbXIZO5IynTZEzSgv56U1pw5-rC4TsH7kfIJYWCAq1uV8UqdqZgAG0BogBOj8icQivyRpT0mMwBGMsFbfmMnIWwggSWvDolM9oKoBTqOVm-TdGs1ZhpZ6N3YxaiVxE_v7PB-WzyuEUbjbOZGzK1Ncpmxg7jBu2PyiZle1wbfU5OBjUGvDjcBfl4fHhfPuevb08vy_vXXJd1GfNKCcZbxTTSTpSdorVued9j3WArWDOwivZdVQvaYQp4ApXmTPeqhbKBquELcrPfnbz72mCIcm2CxnFUFt0myJqXkJ5t6kRe_0syqJNAtgPZHtTeheBxkJNPOvy3pCB3kuVK7iTLnWQJQibJqXR1WN90a-z_KgerCbjbA5hsbA16GbRBq7E3HnWUvTP_7f8CJiaNoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20701627</pqid></control><display><type>article</type><title>Optimal control strategy for prevention of avian influenza pandemic</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jung, Eunok ; Iwami, Shingo ; Takeuchi, Yasuhiro ; Jo, Tae-Chang</creator><creatorcontrib>Jung, Eunok ; Iwami, Shingo ; Takeuchi, Yasuhiro ; Jo, Tae-Chang</creatorcontrib><description>The spread of H5N1 virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. Although, fortunately, sustained human-to-human transmissions have not been reported yet, it is said that a pandemic virus which can be easily transmitted among humans certainly emerges in the future. In this study, we extended the previous studies for the prevention of the pandemic influenza to evaluate the time-dependent optimal prevention policies, which are associated with elimination policy and quarantine policy, considering its execution cost. Actually, the execution cost affects the optimal strategy of prevention policies and the prevention of the disease spread. We found that the quarantine policy is very important rather than the elimination policy during the disease spread, even if the unit execution cost of the quarantine policy is more expensive than that of the elimination policy. And also, the change of the unit execution cost does affect the total cumulative cost of the optimal prevention policies but does not affect the relative frequency of each cumulative execution cost. Furthermore, interestingly, we revealed that an optimal strategy to reduce the number of total infected humans might increase a chance of invadability of the mutant influenza.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2009.05.031</identifier><identifier>PMID: 19501107</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Avian influenza ; Birds ; Elimination policy ; Epidemic model ; Health Care Costs - statistics & numerical data ; Humans ; Influenza A Virus, H5N1 Subtype - pathogenicity ; Influenza in Birds - epidemiology ; Influenza, Human - economics ; Influenza, Human - epidemiology ; Influenza, Human - prevention & control ; Influenza, Human - transmission ; Invadability ; Models, Biological ; Optimal control theory ; Pandemics - economics ; Pandemics - prevention & control ; Quarantine policy ; Virulence</subject><ispartof>Journal of theoretical biology, 2009-09, Vol.260 (2), p.220-229</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6a5239a2ce1b54ba17c93dde78e9528f261db6751bee953a2cac32cda90480683</citedby><cites>FETCH-LOGICAL-c474t-6a5239a2ce1b54ba17c93dde78e9528f261db6751bee953a2cac32cda90480683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2009.05.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19501107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Eunok</creatorcontrib><creatorcontrib>Iwami, Shingo</creatorcontrib><creatorcontrib>Takeuchi, Yasuhiro</creatorcontrib><creatorcontrib>Jo, Tae-Chang</creatorcontrib><title>Optimal control strategy for prevention of avian influenza pandemic</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>The spread of H5N1 virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. Although, fortunately, sustained human-to-human transmissions have not been reported yet, it is said that a pandemic virus which can be easily transmitted among humans certainly emerges in the future. In this study, we extended the previous studies for the prevention of the pandemic influenza to evaluate the time-dependent optimal prevention policies, which are associated with elimination policy and quarantine policy, considering its execution cost. Actually, the execution cost affects the optimal strategy of prevention policies and the prevention of the disease spread. We found that the quarantine policy is very important rather than the elimination policy during the disease spread, even if the unit execution cost of the quarantine policy is more expensive than that of the elimination policy. And also, the change of the unit execution cost does affect the total cumulative cost of the optimal prevention policies but does not affect the relative frequency of each cumulative execution cost. Furthermore, interestingly, we revealed that an optimal strategy to reduce the number of total infected humans might increase a chance of invadability of the mutant influenza.</description><subject>Animals</subject><subject>Avian influenza</subject><subject>Birds</subject><subject>Elimination policy</subject><subject>Epidemic model</subject><subject>Health Care Costs - statistics & numerical data</subject><subject>Humans</subject><subject>Influenza A Virus, H5N1 Subtype - pathogenicity</subject><subject>Influenza in Birds - epidemiology</subject><subject>Influenza, Human - economics</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - prevention & control</subject><subject>Influenza, Human - transmission</subject><subject>Invadability</subject><subject>Models, Biological</subject><subject>Optimal control theory</subject><subject>Pandemics - economics</subject><subject>Pandemics - prevention & control</subject><subject>Quarantine policy</subject><subject>Virulence</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMotlb_gAuZla5mvEkm8wA3UnyB4EbXIZO5IynTZEzSgv56U1pw5-rC4TsH7kfIJYWCAq1uV8UqdqZgAG0BogBOj8icQivyRpT0mMwBGMsFbfmMnIWwggSWvDolM9oKoBTqOVm-TdGs1ZhpZ6N3YxaiVxE_v7PB-WzyuEUbjbOZGzK1Ncpmxg7jBu2PyiZle1wbfU5OBjUGvDjcBfl4fHhfPuevb08vy_vXXJd1GfNKCcZbxTTSTpSdorVued9j3WArWDOwivZdVQvaYQp4ApXmTPeqhbKBquELcrPfnbz72mCIcm2CxnFUFt0myJqXkJ5t6kRe_0syqJNAtgPZHtTeheBxkJNPOvy3pCB3kuVK7iTLnWQJQibJqXR1WN90a-z_KgerCbjbA5hsbA16GbRBq7E3HnWUvTP_7f8CJiaNoQ</recordid><startdate>20090921</startdate><enddate>20090921</enddate><creator>Jung, Eunok</creator><creator>Iwami, Shingo</creator><creator>Takeuchi, Yasuhiro</creator><creator>Jo, Tae-Chang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090921</creationdate><title>Optimal control strategy for prevention of avian influenza pandemic</title><author>Jung, Eunok ; Iwami, Shingo ; Takeuchi, Yasuhiro ; Jo, Tae-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6a5239a2ce1b54ba17c93dde78e9528f261db6751bee953a2cac32cda90480683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Avian influenza</topic><topic>Birds</topic><topic>Elimination policy</topic><topic>Epidemic model</topic><topic>Health Care Costs - statistics & numerical data</topic><topic>Humans</topic><topic>Influenza A Virus, H5N1 Subtype - pathogenicity</topic><topic>Influenza in Birds - epidemiology</topic><topic>Influenza, Human - economics</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - prevention & control</topic><topic>Influenza, Human - transmission</topic><topic>Invadability</topic><topic>Models, Biological</topic><topic>Optimal control theory</topic><topic>Pandemics - economics</topic><topic>Pandemics - prevention & control</topic><topic>Quarantine policy</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Eunok</creatorcontrib><creatorcontrib>Iwami, Shingo</creatorcontrib><creatorcontrib>Takeuchi, Yasuhiro</creatorcontrib><creatorcontrib>Jo, Tae-Chang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Eunok</au><au>Iwami, Shingo</au><au>Takeuchi, Yasuhiro</au><au>Jo, Tae-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control strategy for prevention of avian influenza pandemic</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-09-21</date><risdate>2009</risdate><volume>260</volume><issue>2</issue><spage>220</spage><epage>229</epage><pages>220-229</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>The spread of H5N1 virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. Although, fortunately, sustained human-to-human transmissions have not been reported yet, it is said that a pandemic virus which can be easily transmitted among humans certainly emerges in the future. In this study, we extended the previous studies for the prevention of the pandemic influenza to evaluate the time-dependent optimal prevention policies, which are associated with elimination policy and quarantine policy, considering its execution cost. Actually, the execution cost affects the optimal strategy of prevention policies and the prevention of the disease spread. We found that the quarantine policy is very important rather than the elimination policy during the disease spread, even if the unit execution cost of the quarantine policy is more expensive than that of the elimination policy. And also, the change of the unit execution cost does affect the total cumulative cost of the optimal prevention policies but does not affect the relative frequency of each cumulative execution cost. Furthermore, interestingly, we revealed that an optimal strategy to reduce the number of total infected humans might increase a chance of invadability of the mutant influenza.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19501107</pmid><doi>10.1016/j.jtbi.2009.05.031</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2009-09, Vol.260 (2), p.220-229 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_734019387 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Avian influenza Birds Elimination policy Epidemic model Health Care Costs - statistics & numerical data Humans Influenza A Virus, H5N1 Subtype - pathogenicity Influenza in Birds - epidemiology Influenza, Human - economics Influenza, Human - epidemiology Influenza, Human - prevention & control Influenza, Human - transmission Invadability Models, Biological Optimal control theory Pandemics - economics Pandemics - prevention & control Quarantine policy Virulence |
title | Optimal control strategy for prevention of avian influenza pandemic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20strategy%20for%20prevention%20of%20avian%20influenza%20pandemic&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Jung,%20Eunok&rft.date=2009-09-21&rft.volume=260&rft.issue=2&rft.spage=220&rft.epage=229&rft.pages=220-229&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2009.05.031&rft_dat=%3Cproquest_cross%3E20701627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20701627&rft_id=info:pmid/19501107&rft_els_id=S0022519309002550&rfr_iscdi=true |