Axonal regeneration and neural network reconstruction in mammalian CNS
Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regen...
Gespeichert in:
Veröffentlicht in: | Journal of neurology 2009-08, Vol.256 (Suppl 3), p.306-309 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | Suppl 3 |
container_start_page | 306 |
container_title | Journal of neurology |
container_volume | 256 |
creator | Nishio, Takeshi |
description | Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury. |
doi_str_mv | 10.1007/s00415-009-5244-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734018873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066379901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMotlY_gBdZvHiKJptk_xxLsSoUPajnkGRny9bdpCa7WL-9qS0UBE8D837zhvcQuqTklhKS3wVCOBWYkBKLlHO8OUJjylmKKRflMRoTxgkWTPAROgthRQgponCKRrTMKaUpHaP5dOOsahMPS7DgVd84myhbJRYGH_cW-i_nP6JunA29H8wv0dikU12n2kbZZPb8eo5OatUGuNjPCXqf37_NHvHi5eFpNl1gw1nWYwCmWaaVYbzWudF1VhUVEWVGhBHGVEqxlBkCrDCaasHirFOui5yBhpoVbIJudr5r7z4HCL3smmCgbZUFNwSZx8S0iHwkr_-QKzf4GDVIEeNnRZ6WEaI7yHgXgodarn3TKf8tKZHbiuWuYhkrltuK5SbeXO2NB91BdbjYdxqBdAeEKNkl-MPn_11_AHzOh7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>519768729</pqid></control><display><type>article</type><title>Axonal regeneration and neural network reconstruction in mammalian CNS</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nishio, Takeshi</creator><creatorcontrib>Nishio, Takeshi</creatorcontrib><description>Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury.</description><identifier>ISSN: 0340-5354</identifier><identifier>EISSN: 1432-1459</identifier><identifier>DOI: 10.1007/s00415-009-5244-x</identifier><identifier>PMID: 19711121</identifier><language>eng</language><publisher>Heidelberg: D. Steinkopff-Verlag</publisher><subject>Animals ; Experimental methods ; Glycoproteins ; Growth Cones - physiology ; Growth Cones - ultrastructure ; Growth Inhibitors - metabolism ; Medicine ; Medicine & Public Health ; Models, Neurological ; Nerve Fibers, Myelinated - physiology ; Nerve Fibers, Myelinated - ultrastructure ; Nerve Net - cytology ; Nerve Net - physiology ; Nerve Regeneration - physiology ; Nervous system ; Neural networks ; Neurology ; Neuronal Plasticity - physiology ; Neurons ; Neuroradiology ; Neurosciences ; Rats ; Research methodology ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - physiology ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy</subject><ispartof>Journal of neurology, 2009-08, Vol.256 (Suppl 3), p.306-309</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</citedby><cites>FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00415-009-5244-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00415-009-5244-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19711121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishio, Takeshi</creatorcontrib><title>Axonal regeneration and neural network reconstruction in mammalian CNS</title><title>Journal of neurology</title><addtitle>J Neurol</addtitle><addtitle>J Neurol</addtitle><description>Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury.</description><subject>Animals</subject><subject>Experimental methods</subject><subject>Glycoproteins</subject><subject>Growth Cones - physiology</subject><subject>Growth Cones - ultrastructure</subject><subject>Growth Inhibitors - metabolism</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Models, Neurological</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Nerve Fibers, Myelinated - ultrastructure</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Nerve Regeneration - physiology</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Rats</subject><subject>Research methodology</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - physiology</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><issn>0340-5354</issn><issn>1432-1459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kE9LAzEQxYMotlY_gBdZvHiKJptk_xxLsSoUPajnkGRny9bdpCa7WL-9qS0UBE8D837zhvcQuqTklhKS3wVCOBWYkBKLlHO8OUJjylmKKRflMRoTxgkWTPAROgthRQgponCKRrTMKaUpHaP5dOOsahMPS7DgVd84myhbJRYGH_cW-i_nP6JunA29H8wv0dikU12n2kbZZPb8eo5OatUGuNjPCXqf37_NHvHi5eFpNl1gw1nWYwCmWaaVYbzWudF1VhUVEWVGhBHGVEqxlBkCrDCaasHirFOui5yBhpoVbIJudr5r7z4HCL3smmCgbZUFNwSZx8S0iHwkr_-QKzf4GDVIEeNnRZ6WEaI7yHgXgodarn3TKf8tKZHbiuWuYhkrltuK5SbeXO2NB91BdbjYdxqBdAeEKNkl-MPn_11_AHzOh7E</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Nishio, Takeshi</creator><general>D. Steinkopff-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Axonal regeneration and neural network reconstruction in mammalian CNS</title><author>Nishio, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Experimental methods</topic><topic>Glycoproteins</topic><topic>Growth Cones - physiology</topic><topic>Growth Cones - ultrastructure</topic><topic>Growth Inhibitors - metabolism</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Models, Neurological</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Nerve Fibers, Myelinated - ultrastructure</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Nerve Regeneration - physiology</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Rats</topic><topic>Research methodology</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - physiology</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishio, Takeshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishio, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal regeneration and neural network reconstruction in mammalian CNS</atitle><jtitle>Journal of neurology</jtitle><stitle>J Neurol</stitle><addtitle>J Neurol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>256</volume><issue>Suppl 3</issue><spage>306</spage><epage>309</epage><pages>306-309</pages><issn>0340-5354</issn><eissn>1432-1459</eissn><abstract>Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury.</abstract><cop>Heidelberg</cop><pub>D. Steinkopff-Verlag</pub><pmid>19711121</pmid><doi>10.1007/s00415-009-5244-x</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-5354 |
ispartof | Journal of neurology, 2009-08, Vol.256 (Suppl 3), p.306-309 |
issn | 0340-5354 1432-1459 |
language | eng |
recordid | cdi_proquest_miscellaneous_734018873 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Experimental methods Glycoproteins Growth Cones - physiology Growth Cones - ultrastructure Growth Inhibitors - metabolism Medicine Medicine & Public Health Models, Neurological Nerve Fibers, Myelinated - physiology Nerve Fibers, Myelinated - ultrastructure Nerve Net - cytology Nerve Net - physiology Nerve Regeneration - physiology Nervous system Neural networks Neurology Neuronal Plasticity - physiology Neurons Neuroradiology Neurosciences Rats Research methodology Spinal cord Spinal Cord - cytology Spinal Cord - physiology Spinal Cord Injuries - physiopathology Spinal Cord Injuries - therapy |
title | Axonal regeneration and neural network reconstruction in mammalian CNS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20regeneration%20and%20neural%20network%20reconstruction%20in%20mammalian%20CNS&rft.jtitle=Journal%20of%20neurology&rft.au=Nishio,%20Takeshi&rft.date=2009-08-01&rft.volume=256&rft.issue=Suppl%203&rft.spage=306&rft.epage=309&rft.pages=306-309&rft.issn=0340-5354&rft.eissn=1432-1459&rft_id=info:doi/10.1007/s00415-009-5244-x&rft_dat=%3Cproquest_cross%3E2066379901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=519768729&rft_id=info:pmid/19711121&rfr_iscdi=true |