Axonal regeneration and neural network reconstruction in mammalian CNS

Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurology 2009-08, Vol.256 (Suppl 3), p.306-309
1. Verfasser: Nishio, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue Suppl 3
container_start_page 306
container_title Journal of neurology
container_volume 256
creator Nishio, Takeshi
description Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury.
doi_str_mv 10.1007/s00415-009-5244-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734018873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066379901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMotlY_gBdZvHiKJptk_xxLsSoUPajnkGRny9bdpCa7WL-9qS0UBE8D837zhvcQuqTklhKS3wVCOBWYkBKLlHO8OUJjylmKKRflMRoTxgkWTPAROgthRQgponCKRrTMKaUpHaP5dOOsahMPS7DgVd84myhbJRYGH_cW-i_nP6JunA29H8wv0dikU12n2kbZZPb8eo5OatUGuNjPCXqf37_NHvHi5eFpNl1gw1nWYwCmWaaVYbzWudF1VhUVEWVGhBHGVEqxlBkCrDCaasHirFOui5yBhpoVbIJudr5r7z4HCL3smmCgbZUFNwSZx8S0iHwkr_-QKzf4GDVIEeNnRZ6WEaI7yHgXgodarn3TKf8tKZHbiuWuYhkrltuK5SbeXO2NB91BdbjYdxqBdAeEKNkl-MPn_11_AHzOh7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>519768729</pqid></control><display><type>article</type><title>Axonal regeneration and neural network reconstruction in mammalian CNS</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nishio, Takeshi</creator><creatorcontrib>Nishio, Takeshi</creatorcontrib><description>Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury.</description><identifier>ISSN: 0340-5354</identifier><identifier>EISSN: 1432-1459</identifier><identifier>DOI: 10.1007/s00415-009-5244-x</identifier><identifier>PMID: 19711121</identifier><language>eng</language><publisher>Heidelberg: D. Steinkopff-Verlag</publisher><subject>Animals ; Experimental methods ; Glycoproteins ; Growth Cones - physiology ; Growth Cones - ultrastructure ; Growth Inhibitors - metabolism ; Medicine ; Medicine &amp; Public Health ; Models, Neurological ; Nerve Fibers, Myelinated - physiology ; Nerve Fibers, Myelinated - ultrastructure ; Nerve Net - cytology ; Nerve Net - physiology ; Nerve Regeneration - physiology ; Nervous system ; Neural networks ; Neurology ; Neuronal Plasticity - physiology ; Neurons ; Neuroradiology ; Neurosciences ; Rats ; Research methodology ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - physiology ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy</subject><ispartof>Journal of neurology, 2009-08, Vol.256 (Suppl 3), p.306-309</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</citedby><cites>FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00415-009-5244-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00415-009-5244-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19711121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishio, Takeshi</creatorcontrib><title>Axonal regeneration and neural network reconstruction in mammalian CNS</title><title>Journal of neurology</title><addtitle>J Neurol</addtitle><addtitle>J Neurol</addtitle><description>Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury.</description><subject>Animals</subject><subject>Experimental methods</subject><subject>Glycoproteins</subject><subject>Growth Cones - physiology</subject><subject>Growth Cones - ultrastructure</subject><subject>Growth Inhibitors - metabolism</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Neurological</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Nerve Fibers, Myelinated - ultrastructure</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Nerve Regeneration - physiology</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Rats</subject><subject>Research methodology</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - physiology</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><issn>0340-5354</issn><issn>1432-1459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kE9LAzEQxYMotlY_gBdZvHiKJptk_xxLsSoUPajnkGRny9bdpCa7WL-9qS0UBE8D837zhvcQuqTklhKS3wVCOBWYkBKLlHO8OUJjylmKKRflMRoTxgkWTPAROgthRQgponCKRrTMKaUpHaP5dOOsahMPS7DgVd84myhbJRYGH_cW-i_nP6JunA29H8wv0dikU12n2kbZZPb8eo5OatUGuNjPCXqf37_NHvHi5eFpNl1gw1nWYwCmWaaVYbzWudF1VhUVEWVGhBHGVEqxlBkCrDCaasHirFOui5yBhpoVbIJudr5r7z4HCL3smmCgbZUFNwSZx8S0iHwkr_-QKzf4GDVIEeNnRZ6WEaI7yHgXgodarn3TKf8tKZHbiuWuYhkrltuK5SbeXO2NB91BdbjYdxqBdAeEKNkl-MPn_11_AHzOh7E</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Nishio, Takeshi</creator><general>D. Steinkopff-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Axonal regeneration and neural network reconstruction in mammalian CNS</title><author>Nishio, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ee3b36bac34fb7cbf6d8d059605c5ccdaa323c0e38cb1b5338cf24b873ebef383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Experimental methods</topic><topic>Glycoproteins</topic><topic>Growth Cones - physiology</topic><topic>Growth Cones - ultrastructure</topic><topic>Growth Inhibitors - metabolism</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Neurological</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Nerve Fibers, Myelinated - ultrastructure</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Nerve Regeneration - physiology</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Rats</topic><topic>Research methodology</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - physiology</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishio, Takeshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishio, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal regeneration and neural network reconstruction in mammalian CNS</atitle><jtitle>Journal of neurology</jtitle><stitle>J Neurol</stitle><addtitle>J Neurol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>256</volume><issue>Suppl 3</issue><spage>306</spage><epage>309</epage><pages>306-309</pages><issn>0340-5354</issn><eissn>1432-1459</eissn><abstract>Following injury to the white matter of the adult mammalian central nervous system (CNS), severed axons fail to regenerate beyond the lesion site. Recent studies have revealed that the CNS white matter contains numerous axon growth inhibitors. These findings can easily lead to the concept that regenerating axons cannot grow in the CNS white matter because of the growth inhibition by these inhibitory molecules. This “misconception” appears to be generally accepted. However, it is erroneous because axons can grow along the CNS white matter very rapidly. Neurons cultured on a slice of adult rat brain can extend their neurites along the white matter tract, while axons of neurons transplanted into the adult rat spinal cord white matter can grow along the CNS white matter very rapidly, at more than 1 mm/day. Not only artificially transplanted neurons, but also in situ CNS neurons can elongate axons linearly within the CNS white matter at this rate. The idea that a CNS neuron can regenerate a severed axon along the CNS white matter has great significance when thinking about reconstruction of original neural networks after focal destruction due to CNS injury.</abstract><cop>Heidelberg</cop><pub>D. Steinkopff-Verlag</pub><pmid>19711121</pmid><doi>10.1007/s00415-009-5244-x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-5354
ispartof Journal of neurology, 2009-08, Vol.256 (Suppl 3), p.306-309
issn 0340-5354
1432-1459
language eng
recordid cdi_proquest_miscellaneous_734018873
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Experimental methods
Glycoproteins
Growth Cones - physiology
Growth Cones - ultrastructure
Growth Inhibitors - metabolism
Medicine
Medicine & Public Health
Models, Neurological
Nerve Fibers, Myelinated - physiology
Nerve Fibers, Myelinated - ultrastructure
Nerve Net - cytology
Nerve Net - physiology
Nerve Regeneration - physiology
Nervous system
Neural networks
Neurology
Neuronal Plasticity - physiology
Neurons
Neuroradiology
Neurosciences
Rats
Research methodology
Spinal cord
Spinal Cord - cytology
Spinal Cord - physiology
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - therapy
title Axonal regeneration and neural network reconstruction in mammalian CNS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20regeneration%20and%20neural%20network%20reconstruction%20in%20mammalian%20CNS&rft.jtitle=Journal%20of%20neurology&rft.au=Nishio,%20Takeshi&rft.date=2009-08-01&rft.volume=256&rft.issue=Suppl%203&rft.spage=306&rft.epage=309&rft.pages=306-309&rft.issn=0340-5354&rft.eissn=1432-1459&rft_id=info:doi/10.1007/s00415-009-5244-x&rft_dat=%3Cproquest_cross%3E2066379901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=519768729&rft_id=info:pmid/19711121&rfr_iscdi=true