Magnetic Paclitaxel Nanoparticles Inhibit Glioma Growth and Improve the Survival of Rats Bearing Glioma Xenografts

Paclitaxel has fared poorly in clinical trials against brain glioma. We hypothesized that superparamagnetic nanocarriers may enhance its bioactivities by delivering it into the brain. The magnetic paclitaxel nanoparticles (MPNPs) were fabricated and their cytotoxicity against glioma was tested both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anticancer research 2010-06, Vol.30 (6), p.2217-2223
Hauptverfasser: Zhao, Ming, Liang, Chao, Li, Anmin, Chang, Jin, Wang, Hanjie, Yan, Runmin, Zhang, Jiajing, Tai, Junli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2223
container_issue 6
container_start_page 2217
container_title Anticancer research
container_volume 30
creator Zhao, Ming
Liang, Chao
Li, Anmin
Chang, Jin
Wang, Hanjie
Yan, Runmin
Zhang, Jiajing
Tai, Junli
description Paclitaxel has fared poorly in clinical trials against brain glioma. We hypothesized that superparamagnetic nanocarriers may enhance its bioactivities by delivering it into the brain. The magnetic paclitaxel nanoparticles (MPNPs) were fabricated and their cytotoxicity against glioma was tested both in vitro and in glioma-bearing rats. MPNPs exhibited superparamagnetism and produced an extended release of paclitaxel over 15 days in vitro. They were easily internalized into glioma cells and exerted remarkable toxicity, as free paclitaxel did. Furthermore, after intravenous injection of MPNPs to glioma-bearing rats and magnetic targeting with a 0.5 T magnet, drug content increased for 6- to 14-fold in implanted glioma and 4.6- to 12.1-fold in the normal brain compared to free paclitaxel. The survival of glioma-bearing rats was significantly prolonged after magnetic targeting therapy with MPNPs. MPNPs efficiently delivered paclitaxel into brain glioma by magnetic targeting and enhance its antitumor activity. They are promising for local chemotherapy for malignant glioma.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_734005564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734005564</sourcerecordid><originalsourceid>FETCH-LOGICAL-p240t-3db32ce19fbe5c6fc3d4cb917fba5a9ecf66b02b6841c6341665061ee2ba398e3</originalsourceid><addsrcrecordid>eNpF0G1LwzAQB_AiipvTryB5I74qpE2Tri916BzMB3wA35VLetkiaTqTdOq3t-CGcHBw_O44_gfJOCurLC05o4fJmOacpiWlfJSchPBBqRDVlB0no5wKnrEyHyf-HlYOo1HkCZQ1Eb7Rkgdw3Qb8MLUYyMKtjTSRzK3pWiBz333FNQHXkEW78d0WSVwjeen91mzBkk6TZ4iBXCN441b7tXd03cqDjuE0OdJgA57t-iR5u715nd2ly8f5Yna1TDd5QWPKGslyhVmlJXIltGJNoWSVlVoChwqVFkLSXIppkSnBikwITkWGmEtg1RTZJLn8uzs8-dljiHVrgkJrwWHXh7pkxRANF8Ugz3eyly029cabFvxPvY9pABc7AEGB1R6cMuHfMUorNtQvW1lzPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734005564</pqid></control><display><type>article</type><title>Magnetic Paclitaxel Nanoparticles Inhibit Glioma Growth and Improve the Survival of Rats Bearing Glioma Xenografts</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Ming ; Liang, Chao ; Li, Anmin ; Chang, Jin ; Wang, Hanjie ; Yan, Runmin ; Zhang, Jiajing ; Tai, Junli</creator><creatorcontrib>Zhao, Ming ; Liang, Chao ; Li, Anmin ; Chang, Jin ; Wang, Hanjie ; Yan, Runmin ; Zhang, Jiajing ; Tai, Junli</creatorcontrib><description>Paclitaxel has fared poorly in clinical trials against brain glioma. We hypothesized that superparamagnetic nanocarriers may enhance its bioactivities by delivering it into the brain. The magnetic paclitaxel nanoparticles (MPNPs) were fabricated and their cytotoxicity against glioma was tested both in vitro and in glioma-bearing rats. MPNPs exhibited superparamagnetism and produced an extended release of paclitaxel over 15 days in vitro. They were easily internalized into glioma cells and exerted remarkable toxicity, as free paclitaxel did. Furthermore, after intravenous injection of MPNPs to glioma-bearing rats and magnetic targeting with a 0.5 T magnet, drug content increased for 6- to 14-fold in implanted glioma and 4.6- to 12.1-fold in the normal brain compared to free paclitaxel. The survival of glioma-bearing rats was significantly prolonged after magnetic targeting therapy with MPNPs. MPNPs efficiently delivered paclitaxel into brain glioma by magnetic targeting and enhance its antitumor activity. They are promising for local chemotherapy for malignant glioma.</description><identifier>ISSN: 0250-7005</identifier><identifier>EISSN: 1791-7530</identifier><identifier>PMID: 20651372</identifier><language>eng</language><publisher>Attiki: International Institute of Anticancer Research</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - administration &amp; dosage ; Biological and medical sciences ; Brain Neoplasms - drug therapy ; Brain Neoplasms - mortality ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Cerebral Cortex - metabolism ; Glioma - drug therapy ; Glioma - mortality ; Glioma - pathology ; Humans ; Magnetics ; Medical sciences ; Nanoparticles - administration &amp; dosage ; Neurology ; Paclitaxel - administration &amp; dosage ; Paclitaxel - chemistry ; Paclitaxel - metabolism ; Rats ; Rats, Sprague-Dawley ; Solubility ; Tumors ; Tumors of the nervous system. Phacomatoses ; Xenograft Model Antitumor Assays</subject><ispartof>Anticancer research, 2010-06, Vol.30 (6), p.2217-2223</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23009309$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20651372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Li, Anmin</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Wang, Hanjie</creatorcontrib><creatorcontrib>Yan, Runmin</creatorcontrib><creatorcontrib>Zhang, Jiajing</creatorcontrib><creatorcontrib>Tai, Junli</creatorcontrib><title>Magnetic Paclitaxel Nanoparticles Inhibit Glioma Growth and Improve the Survival of Rats Bearing Glioma Xenografts</title><title>Anticancer research</title><addtitle>Anticancer Res</addtitle><description>Paclitaxel has fared poorly in clinical trials against brain glioma. We hypothesized that superparamagnetic nanocarriers may enhance its bioactivities by delivering it into the brain. The magnetic paclitaxel nanoparticles (MPNPs) were fabricated and their cytotoxicity against glioma was tested both in vitro and in glioma-bearing rats. MPNPs exhibited superparamagnetism and produced an extended release of paclitaxel over 15 days in vitro. They were easily internalized into glioma cells and exerted remarkable toxicity, as free paclitaxel did. Furthermore, after intravenous injection of MPNPs to glioma-bearing rats and magnetic targeting with a 0.5 T magnet, drug content increased for 6- to 14-fold in implanted glioma and 4.6- to 12.1-fold in the normal brain compared to free paclitaxel. The survival of glioma-bearing rats was significantly prolonged after magnetic targeting therapy with MPNPs. MPNPs efficiently delivered paclitaxel into brain glioma by magnetic targeting and enhance its antitumor activity. They are promising for local chemotherapy for malignant glioma.</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration &amp; dosage</subject><subject>Biological and medical sciences</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - mortality</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cerebral Cortex - metabolism</subject><subject>Glioma - drug therapy</subject><subject>Glioma - mortality</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Magnetics</subject><subject>Medical sciences</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Neurology</subject><subject>Paclitaxel - administration &amp; dosage</subject><subject>Paclitaxel - chemistry</subject><subject>Paclitaxel - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Solubility</subject><subject>Tumors</subject><subject>Tumors of the nervous system. Phacomatoses</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0250-7005</issn><issn>1791-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0G1LwzAQB_AiipvTryB5I74qpE2Tri916BzMB3wA35VLetkiaTqTdOq3t-CGcHBw_O44_gfJOCurLC05o4fJmOacpiWlfJSchPBBqRDVlB0no5wKnrEyHyf-HlYOo1HkCZQ1Eb7Rkgdw3Qb8MLUYyMKtjTSRzK3pWiBz333FNQHXkEW78d0WSVwjeen91mzBkk6TZ4iBXCN441b7tXd03cqDjuE0OdJgA57t-iR5u715nd2ly8f5Yna1TDd5QWPKGslyhVmlJXIltGJNoWSVlVoChwqVFkLSXIppkSnBikwITkWGmEtg1RTZJLn8uzs8-dljiHVrgkJrwWHXh7pkxRANF8Ugz3eyly029cabFvxPvY9pABc7AEGB1R6cMuHfMUorNtQvW1lzPw</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Zhao, Ming</creator><creator>Liang, Chao</creator><creator>Li, Anmin</creator><creator>Chang, Jin</creator><creator>Wang, Hanjie</creator><creator>Yan, Runmin</creator><creator>Zhang, Jiajing</creator><creator>Tai, Junli</creator><general>International Institute of Anticancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20100601</creationdate><title>Magnetic Paclitaxel Nanoparticles Inhibit Glioma Growth and Improve the Survival of Rats Bearing Glioma Xenografts</title><author>Zhao, Ming ; Liang, Chao ; Li, Anmin ; Chang, Jin ; Wang, Hanjie ; Yan, Runmin ; Zhang, Jiajing ; Tai, Junli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p240t-3db32ce19fbe5c6fc3d4cb917fba5a9ecf66b02b6841c6341665061ee2ba398e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration &amp; dosage</topic><topic>Biological and medical sciences</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - mortality</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cerebral Cortex - metabolism</topic><topic>Glioma - drug therapy</topic><topic>Glioma - mortality</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Magnetics</topic><topic>Medical sciences</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Neurology</topic><topic>Paclitaxel - administration &amp; dosage</topic><topic>Paclitaxel - chemistry</topic><topic>Paclitaxel - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Solubility</topic><topic>Tumors</topic><topic>Tumors of the nervous system. Phacomatoses</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Li, Anmin</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Wang, Hanjie</creatorcontrib><creatorcontrib>Yan, Runmin</creatorcontrib><creatorcontrib>Zhang, Jiajing</creatorcontrib><creatorcontrib>Tai, Junli</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Anticancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ming</au><au>Liang, Chao</au><au>Li, Anmin</au><au>Chang, Jin</au><au>Wang, Hanjie</au><au>Yan, Runmin</au><au>Zhang, Jiajing</au><au>Tai, Junli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Paclitaxel Nanoparticles Inhibit Glioma Growth and Improve the Survival of Rats Bearing Glioma Xenografts</atitle><jtitle>Anticancer research</jtitle><addtitle>Anticancer Res</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>30</volume><issue>6</issue><spage>2217</spage><epage>2223</epage><pages>2217-2223</pages><issn>0250-7005</issn><eissn>1791-7530</eissn><abstract>Paclitaxel has fared poorly in clinical trials against brain glioma. We hypothesized that superparamagnetic nanocarriers may enhance its bioactivities by delivering it into the brain. The magnetic paclitaxel nanoparticles (MPNPs) were fabricated and their cytotoxicity against glioma was tested both in vitro and in glioma-bearing rats. MPNPs exhibited superparamagnetism and produced an extended release of paclitaxel over 15 days in vitro. They were easily internalized into glioma cells and exerted remarkable toxicity, as free paclitaxel did. Furthermore, after intravenous injection of MPNPs to glioma-bearing rats and magnetic targeting with a 0.5 T magnet, drug content increased for 6- to 14-fold in implanted glioma and 4.6- to 12.1-fold in the normal brain compared to free paclitaxel. The survival of glioma-bearing rats was significantly prolonged after magnetic targeting therapy with MPNPs. MPNPs efficiently delivered paclitaxel into brain glioma by magnetic targeting and enhance its antitumor activity. They are promising for local chemotherapy for malignant glioma.</abstract><cop>Attiki</cop><pub>International Institute of Anticancer Research</pub><pmid>20651372</pmid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0250-7005
ispartof Anticancer research, 2010-06, Vol.30 (6), p.2217-2223
issn 0250-7005
1791-7530
language eng
recordid cdi_proquest_miscellaneous_734005564
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Animals
Antineoplastic Agents, Phytogenic - administration & dosage
Biological and medical sciences
Brain Neoplasms - drug therapy
Brain Neoplasms - mortality
Brain Neoplasms - pathology
Cell Line, Tumor
Cerebral Cortex - metabolism
Glioma - drug therapy
Glioma - mortality
Glioma - pathology
Humans
Magnetics
Medical sciences
Nanoparticles - administration & dosage
Neurology
Paclitaxel - administration & dosage
Paclitaxel - chemistry
Paclitaxel - metabolism
Rats
Rats, Sprague-Dawley
Solubility
Tumors
Tumors of the nervous system. Phacomatoses
Xenograft Model Antitumor Assays
title Magnetic Paclitaxel Nanoparticles Inhibit Glioma Growth and Improve the Survival of Rats Bearing Glioma Xenografts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Paclitaxel%20Nanoparticles%20Inhibit%20Glioma%20Growth%20and%20Improve%20the%20Survival%20of%20Rats%20Bearing%20Glioma%20Xenografts&rft.jtitle=Anticancer%20research&rft.au=Zhao,%20Ming&rft.date=2010-06-01&rft.volume=30&rft.issue=6&rft.spage=2217&rft.epage=2223&rft.pages=2217-2223&rft.issn=0250-7005&rft.eissn=1791-7530&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E734005564%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734005564&rft_id=info:pmid/20651372&rfr_iscdi=true