Growth of Gold Nanoparticles in Human Cells

Gold nanoparticles of 20−100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2005-12, Vol.21 (25), p.11562-11567
Hauptverfasser: Anshup, Venkataraman, J. Sai, Subramaniam, Chandramouli, Kumar, R. Rajeev, Priya, Suma, Kumar, T. R. Santhosh, Omkumar, R. V, John, Annie, Pradeep, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11567
container_issue 25
container_start_page 11562
container_title Langmuir
container_volume 21
creator Anshup
Venkataraman, J. Sai
Subramaniam, Chandramouli
Kumar, R. Rajeev
Priya, Suma
Kumar, T. R. Santhosh
Omkumar, R. V
John, Annie
Pradeep, T
description Gold nanoparticles of 20−100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to ∼80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV−visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process.
doi_str_mv 10.1021/la0519249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733997856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733997856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-ca5b559788e94bdc89e921af2554380c35297a4d28a13e40cac15bb59bcfbef73</originalsourceid><addsrcrecordid>eNpt0M1Kw0AUBeBBFFurC19AshERic5vJrOUqK1Yq9K6Hm4mE4ymSZ1JUN_eSEO7cXUX9-NwOAgdE3xJMCVXJWBBFOVqBw2JoDgUMZW7aIglZ6HkERugA-_fMcaKcbWPBiRiJMIxHqKLsau_mregzoNxXWbBDKp6Ba4pTGl9UFTBpF1CFSS2LP0h2suh9PaovyP0ene7SCbh9Gl8n1xPQ-A8bkIDIhVCyTi2iqeZiZVVlEBOheAsxoYJqiTwjMZAmOXYgCEiTYVKTZ7aXLIROlvnrlz92Vrf6GXhTdcAKlu3XkvGVBcvok6er6VxtffO5nrliiW4H02w_ptGb6bp7Emf2qZLm21lv0UHTnsA3kCZO6hM4bdOMo5lRDsXrl3hG_u9-YP70JFkUujF81y_PM5vFg_JTE-2uWC8fq9bV3Xj_VPwFz7ghCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733997856</pqid></control><display><type>article</type><title>Growth of Gold Nanoparticles in Human Cells</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Anshup ; Venkataraman, J. Sai ; Subramaniam, Chandramouli ; Kumar, R. Rajeev ; Priya, Suma ; Kumar, T. R. Santhosh ; Omkumar, R. V ; John, Annie ; Pradeep, T</creator><creatorcontrib>Anshup ; Venkataraman, J. Sai ; Subramaniam, Chandramouli ; Kumar, R. Rajeev ; Priya, Suma ; Kumar, T. R. Santhosh ; Omkumar, R. V ; John, Annie ; Pradeep, T</creatorcontrib><description>Gold nanoparticles of 20−100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to ∼80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV−visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la0519249</identifier><identifier>PMID: 16316080</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Gold - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Membranes ; Metal Nanoparticles ; Microscopy, Electron, Transmission ; Nanoparticles ; Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><ispartof>Langmuir, 2005-12, Vol.21 (25), p.11562-11567</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-ca5b559788e94bdc89e921af2554380c35297a4d28a13e40cac15bb59bcfbef73</citedby><cites>FETCH-LOGICAL-a448t-ca5b559788e94bdc89e921af2554380c35297a4d28a13e40cac15bb59bcfbef73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la0519249$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la0519249$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17340762$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16316080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anshup</creatorcontrib><creatorcontrib>Venkataraman, J. Sai</creatorcontrib><creatorcontrib>Subramaniam, Chandramouli</creatorcontrib><creatorcontrib>Kumar, R. Rajeev</creatorcontrib><creatorcontrib>Priya, Suma</creatorcontrib><creatorcontrib>Kumar, T. R. Santhosh</creatorcontrib><creatorcontrib>Omkumar, R. V</creatorcontrib><creatorcontrib>John, Annie</creatorcontrib><creatorcontrib>Pradeep, T</creatorcontrib><title>Growth of Gold Nanoparticles in Human Cells</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Gold nanoparticles of 20−100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to ∼80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV−visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Membranes</subject><subject>Metal Nanoparticles</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanoparticles</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1Kw0AUBeBBFFurC19AshERic5vJrOUqK1Yq9K6Hm4mE4ymSZ1JUN_eSEO7cXUX9-NwOAgdE3xJMCVXJWBBFOVqBw2JoDgUMZW7aIglZ6HkERugA-_fMcaKcbWPBiRiJMIxHqKLsau_mregzoNxXWbBDKp6Ba4pTGl9UFTBpF1CFSS2LP0h2suh9PaovyP0ene7SCbh9Gl8n1xPQ-A8bkIDIhVCyTi2iqeZiZVVlEBOheAsxoYJqiTwjMZAmOXYgCEiTYVKTZ7aXLIROlvnrlz92Vrf6GXhTdcAKlu3XkvGVBcvok6er6VxtffO5nrliiW4H02w_ptGb6bp7Emf2qZLm21lv0UHTnsA3kCZO6hM4bdOMo5lRDsXrl3hG_u9-YP70JFkUujF81y_PM5vFg_JTE-2uWC8fq9bV3Xj_VPwFz7ghCU</recordid><startdate>20051206</startdate><enddate>20051206</enddate><creator>Anshup</creator><creator>Venkataraman, J. Sai</creator><creator>Subramaniam, Chandramouli</creator><creator>Kumar, R. Rajeev</creator><creator>Priya, Suma</creator><creator>Kumar, T. R. Santhosh</creator><creator>Omkumar, R. V</creator><creator>John, Annie</creator><creator>Pradeep, T</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051206</creationdate><title>Growth of Gold Nanoparticles in Human Cells</title><author>Anshup ; Venkataraman, J. Sai ; Subramaniam, Chandramouli ; Kumar, R. Rajeev ; Priya, Suma ; Kumar, T. R. Santhosh ; Omkumar, R. V ; John, Annie ; Pradeep, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-ca5b559788e94bdc89e921af2554380c35297a4d28a13e40cac15bb59bcfbef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Membranes</topic><topic>Metal Nanoparticles</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanoparticles</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anshup</creatorcontrib><creatorcontrib>Venkataraman, J. Sai</creatorcontrib><creatorcontrib>Subramaniam, Chandramouli</creatorcontrib><creatorcontrib>Kumar, R. Rajeev</creatorcontrib><creatorcontrib>Priya, Suma</creatorcontrib><creatorcontrib>Kumar, T. R. Santhosh</creatorcontrib><creatorcontrib>Omkumar, R. V</creatorcontrib><creatorcontrib>John, Annie</creatorcontrib><creatorcontrib>Pradeep, T</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anshup</au><au>Venkataraman, J. Sai</au><au>Subramaniam, Chandramouli</au><au>Kumar, R. Rajeev</au><au>Priya, Suma</au><au>Kumar, T. R. Santhosh</au><au>Omkumar, R. V</au><au>John, Annie</au><au>Pradeep, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Gold Nanoparticles in Human Cells</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2005-12-06</date><risdate>2005</risdate><volume>21</volume><issue>25</issue><spage>11562</spage><epage>11567</epage><pages>11562-11567</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Gold nanoparticles of 20−100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to ∼80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV−visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16316080</pmid><doi>10.1021/la0519249</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2005-12, Vol.21 (25), p.11562-11567
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_733997856
source MEDLINE; American Chemical Society Journals
subjects Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Gold - metabolism
HEK293 Cells
HeLa Cells
Humans
Membranes
Metal Nanoparticles
Microscopy, Electron, Transmission
Nanoparticles
Physical and chemical studies. Granulometry. Electrokinetic phenomena
title Growth of Gold Nanoparticles in Human Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Gold%20Nanoparticles%20in%20Human%20Cells&rft.jtitle=Langmuir&rft.au=Anshup&rft.date=2005-12-06&rft.volume=21&rft.issue=25&rft.spage=11562&rft.epage=11567&rft.pages=11562-11567&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la0519249&rft_dat=%3Cproquest_cross%3E733997856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733997856&rft_id=info:pmid/16316080&rfr_iscdi=true