Evidence for Differential Folding of Farnesyl Pyrophosphate in the Active Site of Aristolochene Synthase:  A Single-Point Mutation Converts Aristolochene Synthase into an (E)-β-Farnesene Synthase

Sesquiterpene cyclases, many of which share significant structural similarity, catalyze the cyclization reactions of the universal alicyclic precursor farnesyl pyrophosphate to produce more than 300 different hydrocarbon skeletons with high regio- and stereospecificity. The molecular basis of this e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2003-07, Vol.42 (25), p.7741-7747
Hauptverfasser: Deligeorgopoulou, Athina, Allemann, Rudolf K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7747
container_issue 25
container_start_page 7741
container_title Biochemistry (Easton)
container_volume 42
creator Deligeorgopoulou, Athina
Allemann, Rudolf K
description Sesquiterpene cyclases, many of which share significant structural similarity, catalyze the cyclization reactions of the universal alicyclic precursor farnesyl pyrophosphate to produce more than 300 different hydrocarbon skeletons with high regio- and stereospecificity. The molecular basis of this exquisite specificity is not well-understood, but the conformation adopted by FPP in the active site of a sesquiterpene cyclase is thought to be an important determinant of the reaction pathway. Aristolochene synthase (AS) from Penicillium roqueforti catalyzes the cyclization of farnesyl pyrophosphate to the bicyclic sesquiterpene aristolochene. The X-ray structure of AS suggested that the steric bulk of residue 92 was central in binding of FPP to the active site of AS in a quasi-cyclic conformation, thereby facilitating attack of C1 by the C10−C11 double bond to produce the cis-fused Decalin S-germacrene A. We demonstrate here that reduction of the size of the side chain of residue 92 leads to the production of the alicyclic sesquiterpenes (E)-β- and (E,E)-α-farnesene. The relative amounts of linear products formed depended linearly on the size of the residues at position 92. ASY92A, in which Tyr92 had been replaced with Ala, produced almost 80% of alicyclic sesquiterpenes, suggesting an energetic separation of less than 0.8 kcal/mol between the cyclic and noncyclic reaction pathways. A mechanism by which FPP binds to the mutant enzymes in an extended conformation is proposed to explain the altered selectivity. The mutants also produced small amounts of additional hydrocarbons with a molecular weight of 204, namely, α-selinene, β-selinene, selina-4,11-diene, (E,Z)-α-farnesene, and β-bisabolene. The production of (E)-β-farnesene and β-bisabolene suggested that the initial cyclization of FPP to germacrene A in AS proceeded in a stepwise fashion through farnesyl cation.
doi_str_mv 10.1021/bi034410m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73399184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73399184</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-1a87b808ee68cf61ecb6a5f1ef0427215cbc9abfac5bee08f07c123744b787733</originalsourceid><addsrcrecordid>eNp10c2O0zAQAOAIgdjuwoEXQL6A2EPATpzY2VvptvxoVxR1OVuOO954Se1iOxW9ceV1eAiOPARPglGqhQOcLI8_z4xmsuwRwc8JLsiL1uCSUoI3d7IJqQqc06ap7mYTjHGdF02Nj7LjEG7SlWJG72dHpOAF5rycZN_nO7MGqwBp59G50Ro82GhkjxauXxt7jZxGC-kthH2Plnvvtp0L205GQMai2AGaqmh2gFYmhRKeehOi653qwKbo3sZOBjj7-eUrmiZkr3vIl87YiC6HKKNxFs2c3YGP4T9_U6HokLTo2fw0__EtH9v5WzzI7mnZB3h4OE-yD4v51ex1fvHu1ZvZ9CKXJW1iTiRnLcccoOZK1wRUW8tKE9CYFqwglWpVI1stVdUCYK4xU6QoGaUt44yV5Un2dMy79e7TACGKjQkK-l5acEMQiTQN4TTB0xEq70LwoMXWm430e0Gw-L00cbu0ZB8fkg7tBtZ_5GFLCeQjSMOBz7fv0n8UNStZJa6WK_H2_aq5fMlqUSX_ZPRSBXHjBm_TTP5R-BcW1LJ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73399184</pqid></control><display><type>article</type><title>Evidence for Differential Folding of Farnesyl Pyrophosphate in the Active Site of Aristolochene Synthase:  A Single-Point Mutation Converts Aristolochene Synthase into an (E)-β-Farnesene Synthase</title><source>ACS Publications</source><source>MEDLINE</source><creator>Deligeorgopoulou, Athina ; Allemann, Rudolf K</creator><creatorcontrib>Deligeorgopoulou, Athina ; Allemann, Rudolf K</creatorcontrib><description>Sesquiterpene cyclases, many of which share significant structural similarity, catalyze the cyclization reactions of the universal alicyclic precursor farnesyl pyrophosphate to produce more than 300 different hydrocarbon skeletons with high regio- and stereospecificity. The molecular basis of this exquisite specificity is not well-understood, but the conformation adopted by FPP in the active site of a sesquiterpene cyclase is thought to be an important determinant of the reaction pathway. Aristolochene synthase (AS) from Penicillium roqueforti catalyzes the cyclization of farnesyl pyrophosphate to the bicyclic sesquiterpene aristolochene. The X-ray structure of AS suggested that the steric bulk of residue 92 was central in binding of FPP to the active site of AS in a quasi-cyclic conformation, thereby facilitating attack of C1 by the C10−C11 double bond to produce the cis-fused Decalin S-germacrene A. We demonstrate here that reduction of the size of the side chain of residue 92 leads to the production of the alicyclic sesquiterpenes (E)-β- and (E,E)-α-farnesene. The relative amounts of linear products formed depended linearly on the size of the residues at position 92. ASY92A, in which Tyr92 had been replaced with Ala, produced almost 80% of alicyclic sesquiterpenes, suggesting an energetic separation of less than 0.8 kcal/mol between the cyclic and noncyclic reaction pathways. A mechanism by which FPP binds to the mutant enzymes in an extended conformation is proposed to explain the altered selectivity. The mutants also produced small amounts of additional hydrocarbons with a molecular weight of 204, namely, α-selinene, β-selinene, selina-4,11-diene, (E,Z)-α-farnesene, and β-bisabolene. The production of (E)-β-farnesene and β-bisabolene suggested that the initial cyclization of FPP to germacrene A in AS proceeded in a stepwise fashion through farnesyl cation.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi034410m</identifier><identifier>PMID: 12820883</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Circular Dichroism ; Isomerases - genetics ; Isomerases - metabolism ; Penicillium - enzymology ; Point Mutation ; Polyisoprenyl Phosphates - metabolism ; Sesquiterpenes ; Structure-Activity Relationship</subject><ispartof>Biochemistry (Easton), 2003-07, Vol.42 (25), p.7741-7747</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-1a87b808ee68cf61ecb6a5f1ef0427215cbc9abfac5bee08f07c123744b787733</citedby><cites>FETCH-LOGICAL-a349t-1a87b808ee68cf61ecb6a5f1ef0427215cbc9abfac5bee08f07c123744b787733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi034410m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi034410m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12820883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deligeorgopoulou, Athina</creatorcontrib><creatorcontrib>Allemann, Rudolf K</creatorcontrib><title>Evidence for Differential Folding of Farnesyl Pyrophosphate in the Active Site of Aristolochene Synthase:  A Single-Point Mutation Converts Aristolochene Synthase into an (E)-β-Farnesene Synthase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Sesquiterpene cyclases, many of which share significant structural similarity, catalyze the cyclization reactions of the universal alicyclic precursor farnesyl pyrophosphate to produce more than 300 different hydrocarbon skeletons with high regio- and stereospecificity. The molecular basis of this exquisite specificity is not well-understood, but the conformation adopted by FPP in the active site of a sesquiterpene cyclase is thought to be an important determinant of the reaction pathway. Aristolochene synthase (AS) from Penicillium roqueforti catalyzes the cyclization of farnesyl pyrophosphate to the bicyclic sesquiterpene aristolochene. The X-ray structure of AS suggested that the steric bulk of residue 92 was central in binding of FPP to the active site of AS in a quasi-cyclic conformation, thereby facilitating attack of C1 by the C10−C11 double bond to produce the cis-fused Decalin S-germacrene A. We demonstrate here that reduction of the size of the side chain of residue 92 leads to the production of the alicyclic sesquiterpenes (E)-β- and (E,E)-α-farnesene. The relative amounts of linear products formed depended linearly on the size of the residues at position 92. ASY92A, in which Tyr92 had been replaced with Ala, produced almost 80% of alicyclic sesquiterpenes, suggesting an energetic separation of less than 0.8 kcal/mol between the cyclic and noncyclic reaction pathways. A mechanism by which FPP binds to the mutant enzymes in an extended conformation is proposed to explain the altered selectivity. The mutants also produced small amounts of additional hydrocarbons with a molecular weight of 204, namely, α-selinene, β-selinene, selina-4,11-diene, (E,Z)-α-farnesene, and β-bisabolene. The production of (E)-β-farnesene and β-bisabolene suggested that the initial cyclization of FPP to germacrene A in AS proceeded in a stepwise fashion through farnesyl cation.</description><subject>Circular Dichroism</subject><subject>Isomerases - genetics</subject><subject>Isomerases - metabolism</subject><subject>Penicillium - enzymology</subject><subject>Point Mutation</subject><subject>Polyisoprenyl Phosphates - metabolism</subject><subject>Sesquiterpenes</subject><subject>Structure-Activity Relationship</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c2O0zAQAOAIgdjuwoEXQL6A2EPATpzY2VvptvxoVxR1OVuOO954Se1iOxW9ceV1eAiOPARPglGqhQOcLI8_z4xmsuwRwc8JLsiL1uCSUoI3d7IJqQqc06ap7mYTjHGdF02Nj7LjEG7SlWJG72dHpOAF5rycZN_nO7MGqwBp59G50Ro82GhkjxauXxt7jZxGC-kthH2Plnvvtp0L205GQMai2AGaqmh2gFYmhRKeehOi653qwKbo3sZOBjj7-eUrmiZkr3vIl87YiC6HKKNxFs2c3YGP4T9_U6HokLTo2fw0__EtH9v5WzzI7mnZB3h4OE-yD4v51ex1fvHu1ZvZ9CKXJW1iTiRnLcccoOZK1wRUW8tKE9CYFqwglWpVI1stVdUCYK4xU6QoGaUt44yV5Un2dMy79e7TACGKjQkK-l5acEMQiTQN4TTB0xEq70LwoMXWm430e0Gw-L00cbu0ZB8fkg7tBtZ_5GFLCeQjSMOBz7fv0n8UNStZJa6WK_H2_aq5fMlqUSX_ZPRSBXHjBm_TTP5R-BcW1LJ0</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Deligeorgopoulou, Athina</creator><creator>Allemann, Rudolf K</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Evidence for Differential Folding of Farnesyl Pyrophosphate in the Active Site of Aristolochene Synthase:  A Single-Point Mutation Converts Aristolochene Synthase into an (E)-β-Farnesene Synthase</title><author>Deligeorgopoulou, Athina ; Allemann, Rudolf K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-1a87b808ee68cf61ecb6a5f1ef0427215cbc9abfac5bee08f07c123744b787733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Circular Dichroism</topic><topic>Isomerases - genetics</topic><topic>Isomerases - metabolism</topic><topic>Penicillium - enzymology</topic><topic>Point Mutation</topic><topic>Polyisoprenyl Phosphates - metabolism</topic><topic>Sesquiterpenes</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deligeorgopoulou, Athina</creatorcontrib><creatorcontrib>Allemann, Rudolf K</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deligeorgopoulou, Athina</au><au>Allemann, Rudolf K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Differential Folding of Farnesyl Pyrophosphate in the Active Site of Aristolochene Synthase:  A Single-Point Mutation Converts Aristolochene Synthase into an (E)-β-Farnesene Synthase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>42</volume><issue>25</issue><spage>7741</spage><epage>7747</epage><pages>7741-7747</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Sesquiterpene cyclases, many of which share significant structural similarity, catalyze the cyclization reactions of the universal alicyclic precursor farnesyl pyrophosphate to produce more than 300 different hydrocarbon skeletons with high regio- and stereospecificity. The molecular basis of this exquisite specificity is not well-understood, but the conformation adopted by FPP in the active site of a sesquiterpene cyclase is thought to be an important determinant of the reaction pathway. Aristolochene synthase (AS) from Penicillium roqueforti catalyzes the cyclization of farnesyl pyrophosphate to the bicyclic sesquiterpene aristolochene. The X-ray structure of AS suggested that the steric bulk of residue 92 was central in binding of FPP to the active site of AS in a quasi-cyclic conformation, thereby facilitating attack of C1 by the C10−C11 double bond to produce the cis-fused Decalin S-germacrene A. We demonstrate here that reduction of the size of the side chain of residue 92 leads to the production of the alicyclic sesquiterpenes (E)-β- and (E,E)-α-farnesene. The relative amounts of linear products formed depended linearly on the size of the residues at position 92. ASY92A, in which Tyr92 had been replaced with Ala, produced almost 80% of alicyclic sesquiterpenes, suggesting an energetic separation of less than 0.8 kcal/mol between the cyclic and noncyclic reaction pathways. A mechanism by which FPP binds to the mutant enzymes in an extended conformation is proposed to explain the altered selectivity. The mutants also produced small amounts of additional hydrocarbons with a molecular weight of 204, namely, α-selinene, β-selinene, selina-4,11-diene, (E,Z)-α-farnesene, and β-bisabolene. The production of (E)-β-farnesene and β-bisabolene suggested that the initial cyclization of FPP to germacrene A in AS proceeded in a stepwise fashion through farnesyl cation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12820883</pmid><doi>10.1021/bi034410m</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2003-07, Vol.42 (25), p.7741-7747
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_73399184
source ACS Publications; MEDLINE
subjects Circular Dichroism
Isomerases - genetics
Isomerases - metabolism
Penicillium - enzymology
Point Mutation
Polyisoprenyl Phosphates - metabolism
Sesquiterpenes
Structure-Activity Relationship
title Evidence for Differential Folding of Farnesyl Pyrophosphate in the Active Site of Aristolochene Synthase:  A Single-Point Mutation Converts Aristolochene Synthase into an (E)-β-Farnesene Synthase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Differential%20Folding%20of%20Farnesyl%20Pyrophosphate%20in%20the%20Active%20Site%20of%20Aristolochene%20Synthase:%E2%80%89%20A%20Single-Point%20Mutation%20Converts%20Aristolochene%20Synthase%20into%20an%20(E)-%CE%B2-Farnesene%20Synthase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Deligeorgopoulou,%20Athina&rft.date=2003-07-01&rft.volume=42&rft.issue=25&rft.spage=7741&rft.epage=7747&rft.pages=7741-7747&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi034410m&rft_dat=%3Cproquest_cross%3E73399184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73399184&rft_id=info:pmid/12820883&rfr_iscdi=true