When are summary ROC curves appropriate for diagnostic meta-analyses?

Diagnostic tests are increasingly evaluated with systematic reviews and this has lead to the recent developments of statistical methods to analyse such data. The most commonly used method is the summary receiver operating characteristic (SROC) curve, which can be fitted with a non‐linear bivariate r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2009-09, Vol.28 (21), p.2653-2668
Hauptverfasser: Chappell, F. M., Raab, G. M., Wardlaw, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2668
container_issue 21
container_start_page 2653
container_title Statistics in medicine
container_volume 28
creator Chappell, F. M.
Raab, G. M.
Wardlaw, J. M.
description Diagnostic tests are increasingly evaluated with systematic reviews and this has lead to the recent developments of statistical methods to analyse such data. The most commonly used method is the summary receiver operating characteristic (SROC) curve, which can be fitted with a non‐linear bivariate random‐effects model. This paper focuses on the practical problems of interpreting and presenting data from such analyses. First, many meta‐analyses may be underpowered to obtain reliable estimates of the SROC parameters. Second, the SROC model may be inappropriate. In these situations, a summary with two univariate meta‐analyses of the true and false positive rates (TPRs and FPRs) may be more appropriate. We characterize the type of problems that can occur in fitting these models and present an algorithm to guide the analyst of such studies, with illustrations from analyses of published data. A set of R functions, freely available to perform these analyses, can be downloaded from (www.diagmeta.info). Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.3631
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733969274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1831360731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3851-f0045fd1048769f3999063e03c84fb7e92b37612975ba9b7feb6518a5abf8e9e3</originalsourceid><addsrcrecordid>eNp10EFP2zAYxnFrYloLm7RPMFlctkuYXzu24xNCFYNqHZVGUXeznPQ1BJKmsxOg336pGg0JiZMvPz16_SfkM7ATYIx_j2V9IpSAd2QMzOiEcZkdkDHjWidKgxyRwxjvGQOQXH8gIzDSAEA2JufLO1xTF5DGrq5d2NLf8wktuvCIkbrNJjSbULoWqW8CXZXudt3Etixoja1L3NpV24jx9CN5710V8dPwHpGbH-eLyWUym19MJ2ezpBCZhMQzlkq_ApZmWhkvjDFMCWSiyFKfazQ8F1oBN1rmzuTaY64kZE663GdoUByRr_vd_q6_HcbW1mUssKrcGpsuWi2EUYbrtJfHr-R904X-3mg5FyBSJkyPvu1REZoYA3rbf3YXwQKzu7C2D2t3YXv6Zdjr8hpXL3Ao2YNkD57KCrdvDtnr6a9hcPBlbPH5v3fhwSottLTLqwu7VD__zNji0k7EPxbmjzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223134039</pqid></control><display><type>article</type><title>When are summary ROC curves appropriate for diagnostic meta-analyses?</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Chappell, F. M. ; Raab, G. M. ; Wardlaw, J. M.</creator><creatorcontrib>Chappell, F. M. ; Raab, G. M. ; Wardlaw, J. M.</creatorcontrib><description>Diagnostic tests are increasingly evaluated with systematic reviews and this has lead to the recent developments of statistical methods to analyse such data. The most commonly used method is the summary receiver operating characteristic (SROC) curve, which can be fitted with a non‐linear bivariate random‐effects model. This paper focuses on the practical problems of interpreting and presenting data from such analyses. First, many meta‐analyses may be underpowered to obtain reliable estimates of the SROC parameters. Second, the SROC model may be inappropriate. In these situations, a summary with two univariate meta‐analyses of the true and false positive rates (TPRs and FPRs) may be more appropriate. We characterize the type of problems that can occur in fitting these models and present an algorithm to guide the analyst of such studies, with illustrations from analyses of published data. A set of R functions, freely available to perform these analyses, can be downloaded from (www.diagmeta.info). Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.3631</identifier><identifier>PMID: 19591118</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; binomial ; Binomial Distribution ; Confidence Intervals ; Diagnostic tests ; Diagnostic Tests, Routine ; Meta-analysis ; Meta-Analysis as Topic ; Parameter estimation ; random effects ; ROC Curve ; Statistical mechanics</subject><ispartof>Statistics in medicine, 2009-09, Vol.28 (21), p.2653-2668</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Sep 20, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3851-f0045fd1048769f3999063e03c84fb7e92b37612975ba9b7feb6518a5abf8e9e3</citedby><cites>FETCH-LOGICAL-c3851-f0045fd1048769f3999063e03c84fb7e92b37612975ba9b7feb6518a5abf8e9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.3631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.3631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19591118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chappell, F. M.</creatorcontrib><creatorcontrib>Raab, G. M.</creatorcontrib><creatorcontrib>Wardlaw, J. M.</creatorcontrib><title>When are summary ROC curves appropriate for diagnostic meta-analyses?</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Diagnostic tests are increasingly evaluated with systematic reviews and this has lead to the recent developments of statistical methods to analyse such data. The most commonly used method is the summary receiver operating characteristic (SROC) curve, which can be fitted with a non‐linear bivariate random‐effects model. This paper focuses on the practical problems of interpreting and presenting data from such analyses. First, many meta‐analyses may be underpowered to obtain reliable estimates of the SROC parameters. Second, the SROC model may be inappropriate. In these situations, a summary with two univariate meta‐analyses of the true and false positive rates (TPRs and FPRs) may be more appropriate. We characterize the type of problems that can occur in fitting these models and present an algorithm to guide the analyst of such studies, with illustrations from analyses of published data. A set of R functions, freely available to perform these analyses, can be downloaded from (www.diagmeta.info). Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>binomial</subject><subject>Binomial Distribution</subject><subject>Confidence Intervals</subject><subject>Diagnostic tests</subject><subject>Diagnostic Tests, Routine</subject><subject>Meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Parameter estimation</subject><subject>random effects</subject><subject>ROC Curve</subject><subject>Statistical mechanics</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EFP2zAYxnFrYloLm7RPMFlctkuYXzu24xNCFYNqHZVGUXeznPQ1BJKmsxOg336pGg0JiZMvPz16_SfkM7ATYIx_j2V9IpSAd2QMzOiEcZkdkDHjWidKgxyRwxjvGQOQXH8gIzDSAEA2JufLO1xTF5DGrq5d2NLf8wktuvCIkbrNJjSbULoWqW8CXZXudt3Etixoja1L3NpV24jx9CN5710V8dPwHpGbH-eLyWUym19MJ2ezpBCZhMQzlkq_ApZmWhkvjDFMCWSiyFKfazQ8F1oBN1rmzuTaY64kZE663GdoUByRr_vd_q6_HcbW1mUssKrcGpsuWi2EUYbrtJfHr-R904X-3mg5FyBSJkyPvu1REZoYA3rbf3YXwQKzu7C2D2t3YXv6Zdjr8hpXL3Ao2YNkD57KCrdvDtnr6a9hcPBlbPH5v3fhwSottLTLqwu7VD__zNji0k7EPxbmjzo</recordid><startdate>20090920</startdate><enddate>20090920</enddate><creator>Chappell, F. M.</creator><creator>Raab, G. M.</creator><creator>Wardlaw, J. M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20090920</creationdate><title>When are summary ROC curves appropriate for diagnostic meta-analyses?</title><author>Chappell, F. M. ; Raab, G. M. ; Wardlaw, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3851-f0045fd1048769f3999063e03c84fb7e92b37612975ba9b7feb6518a5abf8e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>binomial</topic><topic>Binomial Distribution</topic><topic>Confidence Intervals</topic><topic>Diagnostic tests</topic><topic>Diagnostic Tests, Routine</topic><topic>Meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Parameter estimation</topic><topic>random effects</topic><topic>ROC Curve</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chappell, F. M.</creatorcontrib><creatorcontrib>Raab, G. M.</creatorcontrib><creatorcontrib>Wardlaw, J. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chappell, F. M.</au><au>Raab, G. M.</au><au>Wardlaw, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When are summary ROC curves appropriate for diagnostic meta-analyses?</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2009-09-20</date><risdate>2009</risdate><volume>28</volume><issue>21</issue><spage>2653</spage><epage>2668</epage><pages>2653-2668</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Diagnostic tests are increasingly evaluated with systematic reviews and this has lead to the recent developments of statistical methods to analyse such data. The most commonly used method is the summary receiver operating characteristic (SROC) curve, which can be fitted with a non‐linear bivariate random‐effects model. This paper focuses on the practical problems of interpreting and presenting data from such analyses. First, many meta‐analyses may be underpowered to obtain reliable estimates of the SROC parameters. Second, the SROC model may be inappropriate. In these situations, a summary with two univariate meta‐analyses of the true and false positive rates (TPRs and FPRs) may be more appropriate. We characterize the type of problems that can occur in fitting these models and present an algorithm to guide the analyst of such studies, with illustrations from analyses of published data. A set of R functions, freely available to perform these analyses, can be downloaded from (www.diagmeta.info). Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>19591118</pmid><doi>10.1002/sim.3631</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2009-09, Vol.28 (21), p.2653-2668
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_733969274
source MEDLINE; Wiley Online Library Journals
subjects Algorithms
binomial
Binomial Distribution
Confidence Intervals
Diagnostic tests
Diagnostic Tests, Routine
Meta-analysis
Meta-Analysis as Topic
Parameter estimation
random effects
ROC Curve
Statistical mechanics
title When are summary ROC curves appropriate for diagnostic meta-analyses?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20are%20summary%20ROC%20curves%20appropriate%20for%20diagnostic%20meta-analyses?&rft.jtitle=Statistics%20in%20medicine&rft.au=Chappell,%20F.%20M.&rft.date=2009-09-20&rft.volume=28&rft.issue=21&rft.spage=2653&rft.epage=2668&rft.pages=2653-2668&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.3631&rft_dat=%3Cproquest_cross%3E1831360731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223134039&rft_id=info:pmid/19591118&rfr_iscdi=true