Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes

We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-05, Vol.132 (18), p.6290-6291
Hauptverfasser: Babu, C Satheesan, Lim, Carmay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6291
container_issue 18
container_start_page 6290
container_title Journal of the American Chemical Society
container_volume 132
creator Babu, C Satheesan
Lim, Carmay
description We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by creating a free-energy barrier between a water-rich mode and a water-depleted mode. Through a comparison with the corresponding free-energy barrier in water, this effect is shown to emanate from the enzymes's three-dimensional architecture and its associated environment. Implications of these protein medium effects in RNase H function and in structure-based drug/molecular design are discussed.
doi_str_mv 10.1021/ja101494m
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733947185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733947185</sourcerecordid><originalsourceid>FETCH-LOGICAL-p125t-9ec1b3b6ea349ad60817b308a0140bda5ba9a838c1beb128b384780ffcfee0b33</originalsourceid><addsrcrecordid>eNo1kN1LwzAUxYMgbk4f_AekbypSl5v0I3mU4RdMFNTnctPdSkeazCYdzr_egvPpcOB3Dvcexs6A3wAXMF8jcMh01h2wKeSCpzmIYsKOQ1hzzjOh4IhNBJe6LLSYsrfX3kdq3Tx4uyUXk45W7dAl1DRUx5B4lzx_Xorrq7TG3vjvncVISesi9VjH1rswmjEU0VpP7mfXUThhhw3aQKd7nbGP-7v3xWO6fHl4Wtwu0w2IPKaaajDSFIQy07gquILSSK5wvJ-bFeYGNSqpRooMCGWkykrFm6ZuiLiRcsYu_no3vf8aKMSqa0NN1qIjP4SqlFJnJah8JM_35GDGB6tN33bY76r_HeQvi19drw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733947185</pqid></control><display><type>article</type><title>Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Babu, C Satheesan ; Lim, Carmay</creator><creatorcontrib>Babu, C Satheesan ; Lim, Carmay</creatorcontrib><description>We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by creating a free-energy barrier between a water-rich mode and a water-depleted mode. Through a comparison with the corresponding free-energy barrier in water, this effect is shown to emanate from the enzymes's three-dimensional architecture and its associated environment. Implications of these protein medium effects in RNase H function and in structure-based drug/molecular design are discussed.</description><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja101494m</identifier><identifier>PMID: 20397692</identifier><language>eng</language><publisher>United States</publisher><subject>Binding Sites ; Carboxylic Acids - metabolism ; Drug Design ; Enzymes - chemistry ; Enzymes - metabolism ; Escherichia coli - enzymology ; HIV-1 - enzymology ; Leukemia Virus, Murine - enzymology ; Magnesium - metabolism ; Metalloproteins - chemistry ; Metalloproteins - metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Ribonuclease H - chemistry ; Ribonuclease H - metabolism ; Solvents - chemistry ; Thermodynamics ; Water - chemistry</subject><ispartof>Journal of the American Chemical Society, 2010-05, Vol.132 (18), p.6290-6291</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20397692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Babu, C Satheesan</creatorcontrib><creatorcontrib>Lim, Carmay</creatorcontrib><title>Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by creating a free-energy barrier between a water-rich mode and a water-depleted mode. Through a comparison with the corresponding free-energy barrier in water, this effect is shown to emanate from the enzymes's three-dimensional architecture and its associated environment. Implications of these protein medium effects in RNase H function and in structure-based drug/molecular design are discussed.</description><subject>Binding Sites</subject><subject>Carboxylic Acids - metabolism</subject><subject>Drug Design</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>HIV-1 - enzymology</subject><subject>Leukemia Virus, Murine - enzymology</subject><subject>Magnesium - metabolism</subject><subject>Metalloproteins - chemistry</subject><subject>Metalloproteins - metabolism</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Ribonuclease H - chemistry</subject><subject>Ribonuclease H - metabolism</subject><subject>Solvents - chemistry</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kN1LwzAUxYMgbk4f_AekbypSl5v0I3mU4RdMFNTnctPdSkeazCYdzr_egvPpcOB3Dvcexs6A3wAXMF8jcMh01h2wKeSCpzmIYsKOQ1hzzjOh4IhNBJe6LLSYsrfX3kdq3Tx4uyUXk45W7dAl1DRUx5B4lzx_Xorrq7TG3vjvncVISesi9VjH1rswmjEU0VpP7mfXUThhhw3aQKd7nbGP-7v3xWO6fHl4Wtwu0w2IPKaaajDSFIQy07gquILSSK5wvJ-bFeYGNSqpRooMCGWkykrFm6ZuiLiRcsYu_no3vf8aKMSqa0NN1qIjP4SqlFJnJah8JM_35GDGB6tN33bY76r_HeQvi19drw</recordid><startdate>20100512</startdate><enddate>20100512</enddate><creator>Babu, C Satheesan</creator><creator>Lim, Carmay</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20100512</creationdate><title>Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes</title><author>Babu, C Satheesan ; Lim, Carmay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p125t-9ec1b3b6ea349ad60817b308a0140bda5ba9a838c1beb128b384780ffcfee0b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binding Sites</topic><topic>Carboxylic Acids - metabolism</topic><topic>Drug Design</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>HIV-1 - enzymology</topic><topic>Leukemia Virus, Murine - enzymology</topic><topic>Magnesium - metabolism</topic><topic>Metalloproteins - chemistry</topic><topic>Metalloproteins - metabolism</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Ribonuclease H - chemistry</topic><topic>Ribonuclease H - metabolism</topic><topic>Solvents - chemistry</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, C Satheesan</creatorcontrib><creatorcontrib>Lim, Carmay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, C Satheesan</au><au>Lim, Carmay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2010-05-12</date><risdate>2010</risdate><volume>132</volume><issue>18</issue><spage>6290</spage><epage>6291</epage><pages>6290-6291</pages><eissn>1520-5126</eissn><abstract>We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by creating a free-energy barrier between a water-rich mode and a water-depleted mode. Through a comparison with the corresponding free-energy barrier in water, this effect is shown to emanate from the enzymes's three-dimensional architecture and its associated environment. Implications of these protein medium effects in RNase H function and in structure-based drug/molecular design are discussed.</abstract><cop>United States</cop><pmid>20397692</pmid><doi>10.1021/ja101494m</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1520-5126
ispartof Journal of the American Chemical Society, 2010-05, Vol.132 (18), p.6290-6291
issn 1520-5126
language eng
recordid cdi_proquest_miscellaneous_733947185
source MEDLINE; ACS Publications
subjects Binding Sites
Carboxylic Acids - metabolism
Drug Design
Enzymes - chemistry
Enzymes - metabolism
Escherichia coli - enzymology
HIV-1 - enzymology
Leukemia Virus, Murine - enzymology
Magnesium - metabolism
Metalloproteins - chemistry
Metalloproteins - metabolism
Models, Molecular
Protein Binding
Protein Conformation
Ribonuclease H - chemistry
Ribonuclease H - metabolism
Solvents - chemistry
Thermodynamics
Water - chemistry
title Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein/solvent%20medium%20effects%20on%20Mg(2+)-carboxylate%20interactions%20in%20metalloenzymes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Babu,%20C%20Satheesan&rft.date=2010-05-12&rft.volume=132&rft.issue=18&rft.spage=6290&rft.epage=6291&rft.pages=6290-6291&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja101494m&rft_dat=%3Cproquest_pubme%3E733947185%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733947185&rft_id=info:pmid/20397692&rfr_iscdi=true