Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes
We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by cr...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2010-05, Vol.132 (18), p.6290-6291 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by creating a free-energy barrier between a water-rich mode and a water-depleted mode. Through a comparison with the corresponding free-energy barrier in water, this effect is shown to emanate from the enzymes's three-dimensional architecture and its associated environment. Implications of these protein medium effects in RNase H function and in structure-based drug/molecular design are discussed. |
---|---|
ISSN: | 1520-5126 |
DOI: | 10.1021/ja101494m |