Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes

We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-05, Vol.132 (18), p.6290-6291
Hauptverfasser: Babu, C Satheesan, Lim, Carmay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We employed umbrella sampling molecular dynamics simulations in explicit water to study the binding of the Mg(2+) cofactor to ribonuclease H (RNase H) from three different organisms. We show that the enzyme can differentiate between different Mg(2+)-binding modes that are nearly equally stable by creating a free-energy barrier between a water-rich mode and a water-depleted mode. Through a comparison with the corresponding free-energy barrier in water, this effect is shown to emanate from the enzymes's three-dimensional architecture and its associated environment. Implications of these protein medium effects in RNase H function and in structure-based drug/molecular design are discussed.
ISSN:1520-5126
DOI:10.1021/ja101494m