Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening

Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethyle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2010-05, Vol.153 (1), p.294-305
Hauptverfasser: Tacken, Emma, Ireland, Hilary, Gunaseelan, Kularajathevan, Karunairetnam, Sakuntala, Wang, Daisy, Schultz, Keith, Bowen, Judith, Atkinson, Ross G, Johnston, Jason W, Putterill, Jo, Hellens, Roger P, Schaffer, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 1
container_start_page 294
container_title Plant physiology (Bethesda)
container_volume 153
creator Tacken, Emma
Ireland, Hilary
Gunaseelan, Kularajathevan
Karunairetnam, Sakuntala
Wang, Daisy
Schultz, Keith
Bowen, Judith
Atkinson, Ross G
Johnston, Jason W
Putterill, Jo
Hellens, Roger P
Schaffer, Robert J
description Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.
doi_str_mv 10.1104/pp.109.151092
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733943619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25680847</jstor_id><sourcerecordid>25680847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</originalsourceid><addsrcrecordid>eNpFkU2P0zAQhi0EYkvhyBHwBe0pZWznwz5GVbcgVRT148ApGhKnm1Uae23nsP8eV-nuXuyR55lHo9eEfGawYAzSH9YuGKgFy-LJ35AZywRPeJbKt2QGEGuQUt2QD94_AAATLH1PbjhwUQDnM2J3ptfUtHQV7p96PWiKQ0OXpm_oQZ-tdhhGp2k30HCv6U6fxh5DZ4bLyOWltDbO_9lu_q7LTbk8HHfb3-V-xej62XXnxi7QvWmDHrrh9JG8a7H3-tP1npPj3eqw_Jlstutfy3KT1GkhQiJQYc1zKYoaUOStzHJkbdwalYjb54XmqciLDLDliukm4rIQmCsJDBupxJzcTl7rzOOofajOna913-OgzeirQggVDexCJhNZO-O9021lXXdG91QxqC4ZV9bGUlVTxpH_ejWP_866eaGfQ43A9yuAvsa-dTjUnX_leCFBpSxyXybuwQfjXvtZLkHGFObk29Rv0VR4ctFx3PP4h8CkkCnk4j8lgJPR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733943619</pqid></control><display><type>article</type><title>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tacken, Emma ; Ireland, Hilary ; Gunaseelan, Kularajathevan ; Karunairetnam, Sakuntala ; Wang, Daisy ; Schultz, Keith ; Bowen, Judith ; Atkinson, Ross G ; Johnston, Jason W ; Putterill, Jo ; Hellens, Roger P ; Schaffer, Robert J</creator><creatorcontrib>Tacken, Emma ; Ireland, Hilary ; Gunaseelan, Kularajathevan ; Karunairetnam, Sakuntala ; Wang, Daisy ; Schultz, Keith ; Bowen, Judith ; Atkinson, Ross G ; Johnston, Jason W ; Putterill, Jo ; Hellens, Roger P ; Schaffer, Robert J</creatorcontrib><description>Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.151092</identifier><identifier>PMID: 20237022</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Biological and medical sciences ; Cell walls ; Cells, Cultured ; Cold Temperature ; Complementary DNA ; DEVELOPMENT AND HORMONE ACTION ; Ethylenes - metabolism ; Fruit - growth &amp; development ; Fruiting ; Fruits ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Malus - genetics ; Malus - metabolism ; Plant physiology and development ; Plant Proteins - metabolism ; Plants ; Polygalacturonase - genetics ; Polygalacturonase - metabolism ; Ripening ; Transactivation ; Transcription factors ; Transcription Factors - metabolism</subject><ispartof>Plant physiology (Bethesda), 2010-05, Vol.153 (1), p.294-305</ispartof><rights>2010 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</citedby><cites>FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25680847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25680847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22780941$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20237022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tacken, Emma</creatorcontrib><creatorcontrib>Ireland, Hilary</creatorcontrib><creatorcontrib>Gunaseelan, Kularajathevan</creatorcontrib><creatorcontrib>Karunairetnam, Sakuntala</creatorcontrib><creatorcontrib>Wang, Daisy</creatorcontrib><creatorcontrib>Schultz, Keith</creatorcontrib><creatorcontrib>Bowen, Judith</creatorcontrib><creatorcontrib>Atkinson, Ross G</creatorcontrib><creatorcontrib>Johnston, Jason W</creatorcontrib><creatorcontrib>Putterill, Jo</creatorcontrib><creatorcontrib>Hellens, Roger P</creatorcontrib><creatorcontrib>Schaffer, Robert J</creatorcontrib><title>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.</description><subject>Biological and medical sciences</subject><subject>Cell walls</subject><subject>Cells, Cultured</subject><subject>Cold Temperature</subject><subject>Complementary DNA</subject><subject>DEVELOPMENT AND HORMONE ACTION</subject><subject>Ethylenes - metabolism</subject><subject>Fruit - growth &amp; development</subject><subject>Fruiting</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Malus - genetics</subject><subject>Malus - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Polygalacturonase - genetics</subject><subject>Polygalacturonase - metabolism</subject><subject>Ripening</subject><subject>Transactivation</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU2P0zAQhi0EYkvhyBHwBe0pZWznwz5GVbcgVRT148ApGhKnm1Uae23nsP8eV-nuXuyR55lHo9eEfGawYAzSH9YuGKgFy-LJ35AZywRPeJbKt2QGEGuQUt2QD94_AAATLH1PbjhwUQDnM2J3ptfUtHQV7p96PWiKQ0OXpm_oQZ-tdhhGp2k30HCv6U6fxh5DZ4bLyOWltDbO_9lu_q7LTbk8HHfb3-V-xej62XXnxi7QvWmDHrrh9JG8a7H3-tP1npPj3eqw_Jlstutfy3KT1GkhQiJQYc1zKYoaUOStzHJkbdwalYjb54XmqciLDLDliukm4rIQmCsJDBupxJzcTl7rzOOofajOna913-OgzeirQggVDexCJhNZO-O9021lXXdG91QxqC4ZV9bGUlVTxpH_ejWP_866eaGfQ43A9yuAvsa-dTjUnX_leCFBpSxyXybuwQfjXvtZLkHGFObk29Rv0VR4ctFx3PP4h8CkkCnk4j8lgJPR</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Tacken, Emma</creator><creator>Ireland, Hilary</creator><creator>Gunaseelan, Kularajathevan</creator><creator>Karunairetnam, Sakuntala</creator><creator>Wang, Daisy</creator><creator>Schultz, Keith</creator><creator>Bowen, Judith</creator><creator>Atkinson, Ross G</creator><creator>Johnston, Jason W</creator><creator>Putterill, Jo</creator><creator>Hellens, Roger P</creator><creator>Schaffer, Robert J</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100501</creationdate><title>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</title><author>Tacken, Emma ; Ireland, Hilary ; Gunaseelan, Kularajathevan ; Karunairetnam, Sakuntala ; Wang, Daisy ; Schultz, Keith ; Bowen, Judith ; Atkinson, Ross G ; Johnston, Jason W ; Putterill, Jo ; Hellens, Roger P ; Schaffer, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Cell walls</topic><topic>Cells, Cultured</topic><topic>Cold Temperature</topic><topic>Complementary DNA</topic><topic>DEVELOPMENT AND HORMONE ACTION</topic><topic>Ethylenes - metabolism</topic><topic>Fruit - growth &amp; development</topic><topic>Fruiting</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Malus - genetics</topic><topic>Malus - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Polygalacturonase - genetics</topic><topic>Polygalacturonase - metabolism</topic><topic>Ripening</topic><topic>Transactivation</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tacken, Emma</creatorcontrib><creatorcontrib>Ireland, Hilary</creatorcontrib><creatorcontrib>Gunaseelan, Kularajathevan</creatorcontrib><creatorcontrib>Karunairetnam, Sakuntala</creatorcontrib><creatorcontrib>Wang, Daisy</creatorcontrib><creatorcontrib>Schultz, Keith</creatorcontrib><creatorcontrib>Bowen, Judith</creatorcontrib><creatorcontrib>Atkinson, Ross G</creatorcontrib><creatorcontrib>Johnston, Jason W</creatorcontrib><creatorcontrib>Putterill, Jo</creatorcontrib><creatorcontrib>Hellens, Roger P</creatorcontrib><creatorcontrib>Schaffer, Robert J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tacken, Emma</au><au>Ireland, Hilary</au><au>Gunaseelan, Kularajathevan</au><au>Karunairetnam, Sakuntala</au><au>Wang, Daisy</au><au>Schultz, Keith</au><au>Bowen, Judith</au><au>Atkinson, Ross G</au><au>Johnston, Jason W</au><au>Putterill, Jo</au><au>Hellens, Roger P</au><au>Schaffer, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>153</volume><issue>1</issue><spage>294</spage><epage>305</epage><pages>294-305</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>20237022</pmid><doi>10.1104/pp.109.151092</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2010-05, Vol.153 (1), p.294-305
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_733943619
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Biological and medical sciences
Cell walls
Cells, Cultured
Cold Temperature
Complementary DNA
DEVELOPMENT AND HORMONE ACTION
Ethylenes - metabolism
Fruit - growth & development
Fruiting
Fruits
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Plant
Genes
Malus - genetics
Malus - metabolism
Plant physiology and development
Plant Proteins - metabolism
Plants
Polygalacturonase - genetics
Polygalacturonase - metabolism
Ripening
Transactivation
Transcription factors
Transcription Factors - metabolism
title Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Ethylene%20and%20Cold%20Temperature%20in%20the%20Regulation%20of%20the%20Apple%20POLYGALACTURONASE1%20Gene%20and%20Fruit%20Softening&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Tacken,%20Emma&rft.date=2010-05-01&rft.volume=153&rft.issue=1&rft.spage=294&rft.epage=305&rft.pages=294-305&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.151092&rft_dat=%3Cjstor_proqu%3E25680847%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733943619&rft_id=info:pmid/20237022&rft_jstor_id=25680847&rfr_iscdi=true