Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening
Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethyle...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2010-05, Vol.153 (1), p.294-305 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 1 |
container_start_page | 294 |
container_title | Plant physiology (Bethesda) |
container_volume | 153 |
creator | Tacken, Emma Ireland, Hilary Gunaseelan, Kularajathevan Karunairetnam, Sakuntala Wang, Daisy Schultz, Keith Bowen, Judith Atkinson, Ross G Johnston, Jason W Putterill, Jo Hellens, Roger P Schaffer, Robert J |
description | Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples. |
doi_str_mv | 10.1104/pp.109.151092 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733943619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25680847</jstor_id><sourcerecordid>25680847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</originalsourceid><addsrcrecordid>eNpFkU2P0zAQhi0EYkvhyBHwBe0pZWznwz5GVbcgVRT148ApGhKnm1Uae23nsP8eV-nuXuyR55lHo9eEfGawYAzSH9YuGKgFy-LJ35AZywRPeJbKt2QGEGuQUt2QD94_AAATLH1PbjhwUQDnM2J3ptfUtHQV7p96PWiKQ0OXpm_oQZ-tdhhGp2k30HCv6U6fxh5DZ4bLyOWltDbO_9lu_q7LTbk8HHfb3-V-xej62XXnxi7QvWmDHrrh9JG8a7H3-tP1npPj3eqw_Jlstutfy3KT1GkhQiJQYc1zKYoaUOStzHJkbdwalYjb54XmqciLDLDliukm4rIQmCsJDBupxJzcTl7rzOOofajOna913-OgzeirQggVDexCJhNZO-O9021lXXdG91QxqC4ZV9bGUlVTxpH_ejWP_866eaGfQ43A9yuAvsa-dTjUnX_leCFBpSxyXybuwQfjXvtZLkHGFObk29Rv0VR4ctFx3PP4h8CkkCnk4j8lgJPR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733943619</pqid></control><display><type>article</type><title>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tacken, Emma ; Ireland, Hilary ; Gunaseelan, Kularajathevan ; Karunairetnam, Sakuntala ; Wang, Daisy ; Schultz, Keith ; Bowen, Judith ; Atkinson, Ross G ; Johnston, Jason W ; Putterill, Jo ; Hellens, Roger P ; Schaffer, Robert J</creator><creatorcontrib>Tacken, Emma ; Ireland, Hilary ; Gunaseelan, Kularajathevan ; Karunairetnam, Sakuntala ; Wang, Daisy ; Schultz, Keith ; Bowen, Judith ; Atkinson, Ross G ; Johnston, Jason W ; Putterill, Jo ; Hellens, Roger P ; Schaffer, Robert J</creatorcontrib><description>Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.151092</identifier><identifier>PMID: 20237022</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Biological and medical sciences ; Cell walls ; Cells, Cultured ; Cold Temperature ; Complementary DNA ; DEVELOPMENT AND HORMONE ACTION ; Ethylenes - metabolism ; Fruit - growth & development ; Fruiting ; Fruits ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Malus - genetics ; Malus - metabolism ; Plant physiology and development ; Plant Proteins - metabolism ; Plants ; Polygalacturonase - genetics ; Polygalacturonase - metabolism ; Ripening ; Transactivation ; Transcription factors ; Transcription Factors - metabolism</subject><ispartof>Plant physiology (Bethesda), 2010-05, Vol.153 (1), p.294-305</ispartof><rights>2010 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</citedby><cites>FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25680847$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25680847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22780941$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20237022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tacken, Emma</creatorcontrib><creatorcontrib>Ireland, Hilary</creatorcontrib><creatorcontrib>Gunaseelan, Kularajathevan</creatorcontrib><creatorcontrib>Karunairetnam, Sakuntala</creatorcontrib><creatorcontrib>Wang, Daisy</creatorcontrib><creatorcontrib>Schultz, Keith</creatorcontrib><creatorcontrib>Bowen, Judith</creatorcontrib><creatorcontrib>Atkinson, Ross G</creatorcontrib><creatorcontrib>Johnston, Jason W</creatorcontrib><creatorcontrib>Putterill, Jo</creatorcontrib><creatorcontrib>Hellens, Roger P</creatorcontrib><creatorcontrib>Schaffer, Robert J</creatorcontrib><title>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.</description><subject>Biological and medical sciences</subject><subject>Cell walls</subject><subject>Cells, Cultured</subject><subject>Cold Temperature</subject><subject>Complementary DNA</subject><subject>DEVELOPMENT AND HORMONE ACTION</subject><subject>Ethylenes - metabolism</subject><subject>Fruit - growth & development</subject><subject>Fruiting</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Malus - genetics</subject><subject>Malus - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Polygalacturonase - genetics</subject><subject>Polygalacturonase - metabolism</subject><subject>Ripening</subject><subject>Transactivation</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU2P0zAQhi0EYkvhyBHwBe0pZWznwz5GVbcgVRT148ApGhKnm1Uae23nsP8eV-nuXuyR55lHo9eEfGawYAzSH9YuGKgFy-LJ35AZywRPeJbKt2QGEGuQUt2QD94_AAATLH1PbjhwUQDnM2J3ptfUtHQV7p96PWiKQ0OXpm_oQZ-tdhhGp2k30HCv6U6fxh5DZ4bLyOWltDbO_9lu_q7LTbk8HHfb3-V-xej62XXnxi7QvWmDHrrh9JG8a7H3-tP1npPj3eqw_Jlstutfy3KT1GkhQiJQYc1zKYoaUOStzHJkbdwalYjb54XmqciLDLDliukm4rIQmCsJDBupxJzcTl7rzOOofajOna913-OgzeirQggVDexCJhNZO-O9021lXXdG91QxqC4ZV9bGUlVTxpH_ejWP_866eaGfQ43A9yuAvsa-dTjUnX_leCFBpSxyXybuwQfjXvtZLkHGFObk29Rv0VR4ctFx3PP4h8CkkCnk4j8lgJPR</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Tacken, Emma</creator><creator>Ireland, Hilary</creator><creator>Gunaseelan, Kularajathevan</creator><creator>Karunairetnam, Sakuntala</creator><creator>Wang, Daisy</creator><creator>Schultz, Keith</creator><creator>Bowen, Judith</creator><creator>Atkinson, Ross G</creator><creator>Johnston, Jason W</creator><creator>Putterill, Jo</creator><creator>Hellens, Roger P</creator><creator>Schaffer, Robert J</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100501</creationdate><title>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</title><author>Tacken, Emma ; Ireland, Hilary ; Gunaseelan, Kularajathevan ; Karunairetnam, Sakuntala ; Wang, Daisy ; Schultz, Keith ; Bowen, Judith ; Atkinson, Ross G ; Johnston, Jason W ; Putterill, Jo ; Hellens, Roger P ; Schaffer, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-3a9ac26837c0a36f856a1f237a9320267e2436750af291eda9a873a69801ad893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Cell walls</topic><topic>Cells, Cultured</topic><topic>Cold Temperature</topic><topic>Complementary DNA</topic><topic>DEVELOPMENT AND HORMONE ACTION</topic><topic>Ethylenes - metabolism</topic><topic>Fruit - growth & development</topic><topic>Fruiting</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Malus - genetics</topic><topic>Malus - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Polygalacturonase - genetics</topic><topic>Polygalacturonase - metabolism</topic><topic>Ripening</topic><topic>Transactivation</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tacken, Emma</creatorcontrib><creatorcontrib>Ireland, Hilary</creatorcontrib><creatorcontrib>Gunaseelan, Kularajathevan</creatorcontrib><creatorcontrib>Karunairetnam, Sakuntala</creatorcontrib><creatorcontrib>Wang, Daisy</creatorcontrib><creatorcontrib>Schultz, Keith</creatorcontrib><creatorcontrib>Bowen, Judith</creatorcontrib><creatorcontrib>Atkinson, Ross G</creatorcontrib><creatorcontrib>Johnston, Jason W</creatorcontrib><creatorcontrib>Putterill, Jo</creatorcontrib><creatorcontrib>Hellens, Roger P</creatorcontrib><creatorcontrib>Schaffer, Robert J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tacken, Emma</au><au>Ireland, Hilary</au><au>Gunaseelan, Kularajathevan</au><au>Karunairetnam, Sakuntala</au><au>Wang, Daisy</au><au>Schultz, Keith</au><au>Bowen, Judith</au><au>Atkinson, Ross G</au><au>Johnston, Jason W</au><au>Putterill, Jo</au><au>Hellens, Roger P</au><au>Schaffer, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>153</volume><issue>1</issue><spage>294</spage><epage>305</epage><pages>294-305</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Fruit softening in apple (Malus x domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>20237022</pmid><doi>10.1104/pp.109.151092</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2010-05, Vol.153 (1), p.294-305 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_733943619 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Biological and medical sciences Cell walls Cells, Cultured Cold Temperature Complementary DNA DEVELOPMENT AND HORMONE ACTION Ethylenes - metabolism Fruit - growth & development Fruiting Fruits Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Plant Genes Malus - genetics Malus - metabolism Plant physiology and development Plant Proteins - metabolism Plants Polygalacturonase - genetics Polygalacturonase - metabolism Ripening Transactivation Transcription factors Transcription Factors - metabolism |
title | Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Ethylene%20and%20Cold%20Temperature%20in%20the%20Regulation%20of%20the%20Apple%20POLYGALACTURONASE1%20Gene%20and%20Fruit%20Softening&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Tacken,%20Emma&rft.date=2010-05-01&rft.volume=153&rft.issue=1&rft.spage=294&rft.epage=305&rft.pages=294-305&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.151092&rft_dat=%3Cjstor_proqu%3E25680847%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733943619&rft_id=info:pmid/20237022&rft_jstor_id=25680847&rfr_iscdi=true |