Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules
Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylm...
Gespeichert in:
Veröffentlicht in: | Trends in cell biology 2010-05, Vol.20 (5), p.257-268 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | 5 |
container_start_page | 257 |
container_title | Trends in cell biology |
container_volume | 20 |
creator | Schmitt, Hans Dieter |
description | Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved. |
doi_str_mv | 10.1016/j.tcb.2010.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733939933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0962892410000346</els_id><sourcerecordid>733939933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EgvL4ADYoO1YpYzs4NkhIqDylSiyADRvLcSbUJY9iJ6D-Pa4KLFiwGs3o3quZM4QcUhhToOJkPu5tMWYQe2BjALpBRlTmKuUg5SYZgRIslYplO2Q3hDkA5IzybbLDgDEhcj4id1ehpouTl08KZ4ntmqZrkwbtzLQuNCEpcObaMumxn6F37WvygcHZGkNi4rhx1nf9UAxxsE-2KlMHPPiue-T55vppcpdOH27vJ5fT1GY579OCWS4kngrIRSapQnmaqbLKJRhmVSV5iaYyrOIVCFEKGXeOCmtEASozueB75Hidu_Dd-4Ch140LFuvatNgNQeecK64U51FJ18q4ZAgeK73wrjF-qSnoFT8915GfXvHTwHTkFz1H3-lD0WD56_gBFgXnawHGGz8ceh2sw9Zi6TzaXped-zf-4o_b1q511tRvuMQw7wbfRnia6hAN-nH1wNX_aMQAPBP8C8b6lAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733939933</pqid></control><display><type>article</type><title>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schmitt, Hans Dieter</creator><creatorcontrib>Schmitt, Hans Dieter</creatorcontrib><description>Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.</description><identifier>ISSN: 0962-8924</identifier><identifier>EISSN: 1879-3088</identifier><identifier>DOI: 10.1016/j.tcb.2010.02.001</identifier><identifier>PMID: 20226673</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Endoplasmic Reticulum - metabolism ; Golgi Apparatus - metabolism ; Membrane Fusion ; Models, Biological ; Pathology ; Protein Transport ; Qa-SNARE Proteins - genetics ; Qa-SNARE Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Trends in cell biology, 2010-05, Vol.20 (5), p.257-268</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</citedby><cites>FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0962892410000346$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20226673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, Hans Dieter</creatorcontrib><title>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</title><title>Trends in cell biology</title><addtitle>Trends Cell Biol</addtitle><description>Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.</description><subject>Animals</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Membrane Fusion</subject><subject>Models, Biological</subject><subject>Pathology</subject><subject>Protein Transport</subject><subject>Qa-SNARE Proteins - genetics</subject><subject>Qa-SNARE Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0962-8924</issn><issn>1879-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctOwzAQRS0EgvL4ADYoO1YpYzs4NkhIqDylSiyADRvLcSbUJY9iJ6D-Pa4KLFiwGs3o3quZM4QcUhhToOJkPu5tMWYQe2BjALpBRlTmKuUg5SYZgRIslYplO2Q3hDkA5IzybbLDgDEhcj4id1ehpouTl08KZ4ntmqZrkwbtzLQuNCEpcObaMumxn6F37WvygcHZGkNi4rhx1nf9UAxxsE-2KlMHPPiue-T55vppcpdOH27vJ5fT1GY579OCWS4kngrIRSapQnmaqbLKJRhmVSV5iaYyrOIVCFEKGXeOCmtEASozueB75Hidu_Dd-4Ch140LFuvatNgNQeecK64U51FJ18q4ZAgeK73wrjF-qSnoFT8915GfXvHTwHTkFz1H3-lD0WD56_gBFgXnawHGGz8ceh2sw9Zi6TzaXped-zf-4o_b1q511tRvuMQw7wbfRnia6hAN-nH1wNX_aMQAPBP8C8b6lAs</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Schmitt, Hans Dieter</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100501</creationdate><title>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</title><author>Schmitt, Hans Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Membrane Fusion</topic><topic>Models, Biological</topic><topic>Pathology</topic><topic>Protein Transport</topic><topic>Qa-SNARE Proteins - genetics</topic><topic>Qa-SNARE Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Hans Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Hans Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</atitle><jtitle>Trends in cell biology</jtitle><addtitle>Trends Cell Biol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>20</volume><issue>5</issue><spage>257</spage><epage>268</epage><pages>257-268</pages><issn>0962-8924</issn><eissn>1879-3088</eissn><abstract>Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20226673</pmid><doi>10.1016/j.tcb.2010.02.001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8924 |
ispartof | Trends in cell biology, 2010-05, Vol.20 (5), p.257-268 |
issn | 0962-8924 1879-3088 |
language | eng |
recordid | cdi_proquest_miscellaneous_733939933 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Endoplasmic Reticulum - metabolism Golgi Apparatus - metabolism Membrane Fusion Models, Biological Pathology Protein Transport Qa-SNARE Proteins - genetics Qa-SNARE Proteins - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
title | Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dsl1p/Zw10:%20common%20mechanisms%20behind%20tethering%20vesicles%20and%20microtubules&rft.jtitle=Trends%20in%20cell%20biology&rft.au=Schmitt,%20Hans%20Dieter&rft.date=2010-05-01&rft.volume=20&rft.issue=5&rft.spage=257&rft.epage=268&rft.pages=257-268&rft.issn=0962-8924&rft.eissn=1879-3088&rft_id=info:doi/10.1016/j.tcb.2010.02.001&rft_dat=%3Cproquest_cross%3E733939933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733939933&rft_id=info:pmid/20226673&rft_els_id=1_s2_0_S0962892410000346&rfr_iscdi=true |