Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules

Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in cell biology 2010-05, Vol.20 (5), p.257-268
1. Verfasser: Schmitt, Hans Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 5
container_start_page 257
container_title Trends in cell biology
container_volume 20
creator Schmitt, Hans Dieter
description Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.
doi_str_mv 10.1016/j.tcb.2010.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733939933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0962892410000346</els_id><sourcerecordid>733939933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EgvL4ADYoO1YpYzs4NkhIqDylSiyADRvLcSbUJY9iJ6D-Pa4KLFiwGs3o3quZM4QcUhhToOJkPu5tMWYQe2BjALpBRlTmKuUg5SYZgRIslYplO2Q3hDkA5IzybbLDgDEhcj4id1ehpouTl08KZ4ntmqZrkwbtzLQuNCEpcObaMumxn6F37WvygcHZGkNi4rhx1nf9UAxxsE-2KlMHPPiue-T55vppcpdOH27vJ5fT1GY579OCWS4kngrIRSapQnmaqbLKJRhmVSV5iaYyrOIVCFEKGXeOCmtEASozueB75Hidu_Dd-4Ch140LFuvatNgNQeecK64U51FJ18q4ZAgeK73wrjF-qSnoFT8915GfXvHTwHTkFz1H3-lD0WD56_gBFgXnawHGGz8ceh2sw9Zi6TzaXped-zf-4o_b1q511tRvuMQw7wbfRnia6hAN-nH1wNX_aMQAPBP8C8b6lAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733939933</pqid></control><display><type>article</type><title>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schmitt, Hans Dieter</creator><creatorcontrib>Schmitt, Hans Dieter</creatorcontrib><description>Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.</description><identifier>ISSN: 0962-8924</identifier><identifier>EISSN: 1879-3088</identifier><identifier>DOI: 10.1016/j.tcb.2010.02.001</identifier><identifier>PMID: 20226673</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Endoplasmic Reticulum - metabolism ; Golgi Apparatus - metabolism ; Membrane Fusion ; Models, Biological ; Pathology ; Protein Transport ; Qa-SNARE Proteins - genetics ; Qa-SNARE Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Trends in cell biology, 2010-05, Vol.20 (5), p.257-268</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</citedby><cites>FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0962892410000346$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20226673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, Hans Dieter</creatorcontrib><title>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</title><title>Trends in cell biology</title><addtitle>Trends Cell Biol</addtitle><description>Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.</description><subject>Animals</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Membrane Fusion</subject><subject>Models, Biological</subject><subject>Pathology</subject><subject>Protein Transport</subject><subject>Qa-SNARE Proteins - genetics</subject><subject>Qa-SNARE Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0962-8924</issn><issn>1879-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctOwzAQRS0EgvL4ADYoO1YpYzs4NkhIqDylSiyADRvLcSbUJY9iJ6D-Pa4KLFiwGs3o3quZM4QcUhhToOJkPu5tMWYQe2BjALpBRlTmKuUg5SYZgRIslYplO2Q3hDkA5IzybbLDgDEhcj4id1ehpouTl08KZ4ntmqZrkwbtzLQuNCEpcObaMumxn6F37WvygcHZGkNi4rhx1nf9UAxxsE-2KlMHPPiue-T55vppcpdOH27vJ5fT1GY579OCWS4kngrIRSapQnmaqbLKJRhmVSV5iaYyrOIVCFEKGXeOCmtEASozueB75Hidu_Dd-4Ch140LFuvatNgNQeecK64U51FJ18q4ZAgeK73wrjF-qSnoFT8915GfXvHTwHTkFz1H3-lD0WD56_gBFgXnawHGGz8ceh2sw9Zi6TzaXped-zf-4o_b1q511tRvuMQw7wbfRnia6hAN-nH1wNX_aMQAPBP8C8b6lAs</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Schmitt, Hans Dieter</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100501</creationdate><title>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</title><author>Schmitt, Hans Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-b2c368e560764819e8549df780a2c9f83deafa2f3f066d68000854ca6b094a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Membrane Fusion</topic><topic>Models, Biological</topic><topic>Pathology</topic><topic>Protein Transport</topic><topic>Qa-SNARE Proteins - genetics</topic><topic>Qa-SNARE Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Hans Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Hans Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules</atitle><jtitle>Trends in cell biology</jtitle><addtitle>Trends Cell Biol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>20</volume><issue>5</issue><spage>257</spage><epage>268</epage><pages>257-268</pages><issn>0962-8924</issn><eissn>1879-3088</eissn><abstract>Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20 ) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20226673</pmid><doi>10.1016/j.tcb.2010.02.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8924
ispartof Trends in cell biology, 2010-05, Vol.20 (5), p.257-268
issn 0962-8924
1879-3088
language eng
recordid cdi_proquest_miscellaneous_733939933
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Endoplasmic Reticulum - metabolism
Golgi Apparatus - metabolism
Membrane Fusion
Models, Biological
Pathology
Protein Transport
Qa-SNARE Proteins - genetics
Qa-SNARE Proteins - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
title Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dsl1p/Zw10:%20common%20mechanisms%20behind%20tethering%20vesicles%20and%20microtubules&rft.jtitle=Trends%20in%20cell%20biology&rft.au=Schmitt,%20Hans%20Dieter&rft.date=2010-05-01&rft.volume=20&rft.issue=5&rft.spage=257&rft.epage=268&rft.pages=257-268&rft.issn=0962-8924&rft.eissn=1879-3088&rft_id=info:doi/10.1016/j.tcb.2010.02.001&rft_dat=%3Cproquest_cross%3E733939933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733939933&rft_id=info:pmid/20226673&rft_els_id=1_s2_0_S0962892410000346&rfr_iscdi=true