Marrow Stromal Cell-Based Cyclooxygenase 2 Ex Vivo Gene-Transfer Strategy Surprisingly Lacks Bone-Regeneration Effects and Suppresses the Bone-Regeneration Action of Bone Morphogenetic Protein 4 in a Mouse Critical-Sized Calvarial Defect Model
This study evaluated whether the murine leukemia virus (MLV)–based cyclooxygenase-2 ( Cox-2 ) ex vivo gene-transfer strategy promotes healing of calvarial defects and/or synergistically enhances bone morphogenetic protein (BMP) 4–mediated bone regeneration. Gelatin scaffolds impregnated with mouse m...
Gespeichert in:
Veröffentlicht in: | Calcified tissue international 2009-10, Vol.85 (4), p.356-367 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | 4 |
container_start_page | 356 |
container_title | Calcified tissue international |
container_volume | 85 |
creator | Lau, K.-H. William Gysin, Reinhard Chen, Shin-Tai Wergedal, Jon E. Baylink, David J. Mohan, Subburaman |
description | This study evaluated whether the murine leukemia virus (MLV)–based cyclooxygenase-2 (
Cox-2
) ex vivo gene-transfer strategy promotes healing of calvarial defects and/or synergistically enhances bone morphogenetic protein (BMP) 4–mediated bone regeneration. Gelatin scaffolds impregnated with mouse marrow stromal cells (MSCs) transduced with MLV-expressing
BMP4
,
Cox-2
, or a control gene were implanted into mouse calvarial defects. Bone regeneration was assessed by X-ray, dual-energy X-ray absorptiometry, and histology. In vitro, Cox-2 or prostanglandin E
2
enhanced synergistically the osteoblastic differentiation action of BMP4 in mouse MSCs. In vivo, implantation of BMP4-expressing MSCs yielded massive bone regeneration in calvarial defects after 2 weeks, but the
Cox-2
strategy surprisingly did not promote bone regeneration even after 4 weeks. Staining for alkaline phosphatase (ALP)–expressing osteoblasts was strong throughout the defect of animals receiving BMP2/4-expressing cells, but defects receiving Cox-2-expressing cells displayed weak ALP staining along the edge of original intact bone, indicating that the
Cox-2
strategy lacked bone-regeneration effects. The
Cox-2
strategy not only lacked bone-regeneration effects but also suppressed the BMP4-induced bone regeneration. In vitro coculture of Cox-2-expressing MSCs with BMP4-expressing MSCs in gelatin scaffolds reduced
BMP4
mRNA transcript levels, suggesting that Cox-2 may promote
BMP4
gene silencing in BMP4-expressing cells, which may play a role in the suppressive action of Cox-2 on BMP4-mediated bone formation. In summary, the
Cox-2
ex vivo gene-transfer strategy not only lacks bone-regeneration effects but also suppresses the bone-regeneration action of BMP4 in healing of calvarial defects. |
doi_str_mv | 10.1007/s00223-009-9282-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733939803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879883601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9d98e00b439f60f7d8e34e7c42f7413c5fe3c8d0ba0ad508579d6fcbf4ac1db83</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEokPhAdggiwWsDL5NHC_bMBSkqUBMQewixzmepmTiwU5Kh9fmBTjpjFQJARsfWf93bvafZU85e8UZ068TY0JIypihRhSCinvZjCspKCuEvp_NGNecmlx_PcoepXTFGFd5nj_MjrjRuZRazbJf5zbG8IOshhg2tiMldB09tQkaUu5cF8LNbg093okgixvypb0O5Ax6oBfR9slDnDLtAOsdWY1xG9vU9utuR5bWfUvkNCD5CbACINSGniy8BzckYvsGE7bbCClBIsMl_AU-cbch-FuNnIe4vQyTPrSOfIxhgLYniuBhURxxyDK2qNmOrtqf0wq2u7axxb3ewNQXqQa6x9kDb7sETw7xOPv8dnFRvqPLD2fvy5MldYrxgZrGFMBYraTxOfO6KUAq0E4JrxWXbu5BuqJhtWW2mbNirk2Te1d7ZR1v6kIeZy_3dbcxfB8hDdWmTQ4f2PaA01ZaSiNNwSSSL_5LCi44_tccwed_gFdhjD1uMTHGSJVzhPgecjGkFMFX-C8bG3cVZ9VknGpvnAqNU03GqQTmPDsUHusNNHcZB6cgIPZAQqlfQ7zr_O-qvwHffNJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212993461</pqid></control><display><type>article</type><title>Marrow Stromal Cell-Based Cyclooxygenase 2 Ex Vivo Gene-Transfer Strategy Surprisingly Lacks Bone-Regeneration Effects and Suppresses the Bone-Regeneration Action of Bone Morphogenetic Protein 4 in a Mouse Critical-Sized Calvarial Defect Model</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Lau, K.-H. William ; Gysin, Reinhard ; Chen, Shin-Tai ; Wergedal, Jon E. ; Baylink, David J. ; Mohan, Subburaman</creator><creatorcontrib>Lau, K.-H. William ; Gysin, Reinhard ; Chen, Shin-Tai ; Wergedal, Jon E. ; Baylink, David J. ; Mohan, Subburaman</creatorcontrib><description>This study evaluated whether the murine leukemia virus (MLV)–based cyclooxygenase-2 (
Cox-2
) ex vivo gene-transfer strategy promotes healing of calvarial defects and/or synergistically enhances bone morphogenetic protein (BMP) 4–mediated bone regeneration. Gelatin scaffolds impregnated with mouse marrow stromal cells (MSCs) transduced with MLV-expressing
BMP4
,
Cox-2
, or a control gene were implanted into mouse calvarial defects. Bone regeneration was assessed by X-ray, dual-energy X-ray absorptiometry, and histology. In vitro, Cox-2 or prostanglandin E
2
enhanced synergistically the osteoblastic differentiation action of BMP4 in mouse MSCs. In vivo, implantation of BMP4-expressing MSCs yielded massive bone regeneration in calvarial defects after 2 weeks, but the
Cox-2
strategy surprisingly did not promote bone regeneration even after 4 weeks. Staining for alkaline phosphatase (ALP)–expressing osteoblasts was strong throughout the defect of animals receiving BMP2/4-expressing cells, but defects receiving Cox-2-expressing cells displayed weak ALP staining along the edge of original intact bone, indicating that the
Cox-2
strategy lacked bone-regeneration effects. The
Cox-2
strategy not only lacked bone-regeneration effects but also suppressed the BMP4-induced bone regeneration. In vitro coculture of Cox-2-expressing MSCs with BMP4-expressing MSCs in gelatin scaffolds reduced
BMP4
mRNA transcript levels, suggesting that Cox-2 may promote
BMP4
gene silencing in BMP4-expressing cells, which may play a role in the suppressive action of Cox-2 on BMP4-mediated bone formation. In summary, the
Cox-2
ex vivo gene-transfer strategy not only lacks bone-regeneration effects but also suppresses the bone-regeneration action of BMP4 in healing of calvarial defects.</description><identifier>ISSN: 0171-967X</identifier><identifier>EISSN: 1432-0827</identifier><identifier>DOI: 10.1007/s00223-009-9282-2</identifier><identifier>PMID: 19763374</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Bone density ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Bone Morphogenetic Protein 2 - genetics ; Bone Morphogenetic Protein 2 - metabolism ; Bone Morphogenetic Protein 4 - genetics ; Bone Morphogenetic Protein 4 - metabolism ; Bone Regeneration - physiology ; Cell Biology ; Cells, Cultured ; Cellular biology ; Cyclooxygenase 2 - genetics ; Cyclooxygenase 2 - metabolism ; Dinoprostone - metabolism ; Endocrinology ; Gene expression ; Gene therapy ; Gene Transfer Techniques ; Humans ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Models, Animal ; Murine leukemia virus ; Orthopedics ; RNA, Messenger - metabolism ; Rodents ; Skull - injuries ; Skull - metabolism ; Stromal Cells - cytology ; Stromal Cells - metabolism</subject><ispartof>Calcified tissue international, 2009-10, Vol.85 (4), p.356-367</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9d98e00b439f60f7d8e34e7c42f7413c5fe3c8d0ba0ad508579d6fcbf4ac1db83</citedby><cites>FETCH-LOGICAL-c401t-9d98e00b439f60f7d8e34e7c42f7413c5fe3c8d0ba0ad508579d6fcbf4ac1db83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00223-009-9282-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00223-009-9282-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19763374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, K.-H. William</creatorcontrib><creatorcontrib>Gysin, Reinhard</creatorcontrib><creatorcontrib>Chen, Shin-Tai</creatorcontrib><creatorcontrib>Wergedal, Jon E.</creatorcontrib><creatorcontrib>Baylink, David J.</creatorcontrib><creatorcontrib>Mohan, Subburaman</creatorcontrib><title>Marrow Stromal Cell-Based Cyclooxygenase 2 Ex Vivo Gene-Transfer Strategy Surprisingly Lacks Bone-Regeneration Effects and Suppresses the Bone-Regeneration Action of Bone Morphogenetic Protein 4 in a Mouse Critical-Sized Calvarial Defect Model</title><title>Calcified tissue international</title><addtitle>Calcif Tissue Int</addtitle><addtitle>Calcif Tissue Int</addtitle><description>This study evaluated whether the murine leukemia virus (MLV)–based cyclooxygenase-2 (
Cox-2
) ex vivo gene-transfer strategy promotes healing of calvarial defects and/or synergistically enhances bone morphogenetic protein (BMP) 4–mediated bone regeneration. Gelatin scaffolds impregnated with mouse marrow stromal cells (MSCs) transduced with MLV-expressing
BMP4
,
Cox-2
, or a control gene were implanted into mouse calvarial defects. Bone regeneration was assessed by X-ray, dual-energy X-ray absorptiometry, and histology. In vitro, Cox-2 or prostanglandin E
2
enhanced synergistically the osteoblastic differentiation action of BMP4 in mouse MSCs. In vivo, implantation of BMP4-expressing MSCs yielded massive bone regeneration in calvarial defects after 2 weeks, but the
Cox-2
strategy surprisingly did not promote bone regeneration even after 4 weeks. Staining for alkaline phosphatase (ALP)–expressing osteoblasts was strong throughout the defect of animals receiving BMP2/4-expressing cells, but defects receiving Cox-2-expressing cells displayed weak ALP staining along the edge of original intact bone, indicating that the
Cox-2
strategy lacked bone-regeneration effects. The
Cox-2
strategy not only lacked bone-regeneration effects but also suppressed the BMP4-induced bone regeneration. In vitro coculture of Cox-2-expressing MSCs with BMP4-expressing MSCs in gelatin scaffolds reduced
BMP4
mRNA transcript levels, suggesting that Cox-2 may promote
BMP4
gene silencing in BMP4-expressing cells, which may play a role in the suppressive action of Cox-2 on BMP4-mediated bone formation. In summary, the
Cox-2
ex vivo gene-transfer strategy not only lacks bone-regeneration effects but also suppresses the bone-regeneration action of BMP4 in healing of calvarial defects.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bone density</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Morphogenetic Protein 2 - genetics</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Bone Morphogenetic Protein 4 - genetics</subject><subject>Bone Morphogenetic Protein 4 - metabolism</subject><subject>Bone Regeneration - physiology</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Cyclooxygenase 2 - genetics</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>Dinoprostone - metabolism</subject><subject>Endocrinology</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Animal</subject><subject>Murine leukemia virus</subject><subject>Orthopedics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Skull - injuries</subject><subject>Skull - metabolism</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - metabolism</subject><issn>0171-967X</issn><issn>1432-0827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kstu1DAUhiMEokPhAdggiwWsDL5NHC_bMBSkqUBMQewixzmepmTiwU5Kh9fmBTjpjFQJARsfWf93bvafZU85e8UZ068TY0JIypihRhSCinvZjCspKCuEvp_NGNecmlx_PcoepXTFGFd5nj_MjrjRuZRazbJf5zbG8IOshhg2tiMldB09tQkaUu5cF8LNbg093okgixvypb0O5Ax6oBfR9slDnDLtAOsdWY1xG9vU9utuR5bWfUvkNCD5CbACINSGniy8BzckYvsGE7bbCClBIsMl_AU-cbch-FuNnIe4vQyTPrSOfIxhgLYniuBhURxxyDK2qNmOrtqf0wq2u7axxb3ewNQXqQa6x9kDb7sETw7xOPv8dnFRvqPLD2fvy5MldYrxgZrGFMBYraTxOfO6KUAq0E4JrxWXbu5BuqJhtWW2mbNirk2Te1d7ZR1v6kIeZy_3dbcxfB8hDdWmTQ4f2PaA01ZaSiNNwSSSL_5LCi44_tccwed_gFdhjD1uMTHGSJVzhPgecjGkFMFX-C8bG3cVZ9VknGpvnAqNU03GqQTmPDsUHusNNHcZB6cgIPZAQqlfQ7zr_O-qvwHffNJY</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Lau, K.-H. William</creator><creator>Gysin, Reinhard</creator><creator>Chen, Shin-Tai</creator><creator>Wergedal, Jon E.</creator><creator>Baylink, David J.</creator><creator>Mohan, Subburaman</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20091001</creationdate><title>Marrow Stromal Cell-Based Cyclooxygenase 2 Ex Vivo Gene-Transfer Strategy Surprisingly Lacks Bone-Regeneration Effects and Suppresses the Bone-Regeneration Action of Bone Morphogenetic Protein 4 in a Mouse Critical-Sized Calvarial Defect Model</title><author>Lau, K.-H. William ; Gysin, Reinhard ; Chen, Shin-Tai ; Wergedal, Jon E. ; Baylink, David J. ; Mohan, Subburaman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9d98e00b439f60f7d8e34e7c42f7413c5fe3c8d0ba0ad508579d6fcbf4ac1db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bone density</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Morphogenetic Protein 2 - genetics</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Bone Morphogenetic Protein 4 - genetics</topic><topic>Bone Morphogenetic Protein 4 - metabolism</topic><topic>Bone Regeneration - physiology</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Cyclooxygenase 2 - genetics</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>Dinoprostone - metabolism</topic><topic>Endocrinology</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Animal</topic><topic>Murine leukemia virus</topic><topic>Orthopedics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Skull - injuries</topic><topic>Skull - metabolism</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, K.-H. William</creatorcontrib><creatorcontrib>Gysin, Reinhard</creatorcontrib><creatorcontrib>Chen, Shin-Tai</creatorcontrib><creatorcontrib>Wergedal, Jon E.</creatorcontrib><creatorcontrib>Baylink, David J.</creatorcontrib><creatorcontrib>Mohan, Subburaman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Calcified tissue international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, K.-H. William</au><au>Gysin, Reinhard</au><au>Chen, Shin-Tai</au><au>Wergedal, Jon E.</au><au>Baylink, David J.</au><au>Mohan, Subburaman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marrow Stromal Cell-Based Cyclooxygenase 2 Ex Vivo Gene-Transfer Strategy Surprisingly Lacks Bone-Regeneration Effects and Suppresses the Bone-Regeneration Action of Bone Morphogenetic Protein 4 in a Mouse Critical-Sized Calvarial Defect Model</atitle><jtitle>Calcified tissue international</jtitle><stitle>Calcif Tissue Int</stitle><addtitle>Calcif Tissue Int</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>85</volume><issue>4</issue><spage>356</spage><epage>367</epage><pages>356-367</pages><issn>0171-967X</issn><eissn>1432-0827</eissn><abstract>This study evaluated whether the murine leukemia virus (MLV)–based cyclooxygenase-2 (
Cox-2
) ex vivo gene-transfer strategy promotes healing of calvarial defects and/or synergistically enhances bone morphogenetic protein (BMP) 4–mediated bone regeneration. Gelatin scaffolds impregnated with mouse marrow stromal cells (MSCs) transduced with MLV-expressing
BMP4
,
Cox-2
, or a control gene were implanted into mouse calvarial defects. Bone regeneration was assessed by X-ray, dual-energy X-ray absorptiometry, and histology. In vitro, Cox-2 or prostanglandin E
2
enhanced synergistically the osteoblastic differentiation action of BMP4 in mouse MSCs. In vivo, implantation of BMP4-expressing MSCs yielded massive bone regeneration in calvarial defects after 2 weeks, but the
Cox-2
strategy surprisingly did not promote bone regeneration even after 4 weeks. Staining for alkaline phosphatase (ALP)–expressing osteoblasts was strong throughout the defect of animals receiving BMP2/4-expressing cells, but defects receiving Cox-2-expressing cells displayed weak ALP staining along the edge of original intact bone, indicating that the
Cox-2
strategy lacked bone-regeneration effects. The
Cox-2
strategy not only lacked bone-regeneration effects but also suppressed the BMP4-induced bone regeneration. In vitro coculture of Cox-2-expressing MSCs with BMP4-expressing MSCs in gelatin scaffolds reduced
BMP4
mRNA transcript levels, suggesting that Cox-2 may promote
BMP4
gene silencing in BMP4-expressing cells, which may play a role in the suppressive action of Cox-2 on BMP4-mediated bone formation. In summary, the
Cox-2
ex vivo gene-transfer strategy not only lacks bone-regeneration effects but also suppresses the bone-regeneration action of BMP4 in healing of calvarial defects.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>19763374</pmid><doi>10.1007/s00223-009-9282-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-967X |
ispartof | Calcified tissue international, 2009-10, Vol.85 (4), p.356-367 |
issn | 0171-967X 1432-0827 |
language | eng |
recordid | cdi_proquest_miscellaneous_733939803 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Biochemistry Biomedical and Life Sciences Bone density Bone marrow Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Bone Morphogenetic Protein 2 - genetics Bone Morphogenetic Protein 2 - metabolism Bone Morphogenetic Protein 4 - genetics Bone Morphogenetic Protein 4 - metabolism Bone Regeneration - physiology Cell Biology Cells, Cultured Cellular biology Cyclooxygenase 2 - genetics Cyclooxygenase 2 - metabolism Dinoprostone - metabolism Endocrinology Gene expression Gene therapy Gene Transfer Techniques Humans Life Sciences Male Mice Mice, Inbred C57BL Models, Animal Murine leukemia virus Orthopedics RNA, Messenger - metabolism Rodents Skull - injuries Skull - metabolism Stromal Cells - cytology Stromal Cells - metabolism |
title | Marrow Stromal Cell-Based Cyclooxygenase 2 Ex Vivo Gene-Transfer Strategy Surprisingly Lacks Bone-Regeneration Effects and Suppresses the Bone-Regeneration Action of Bone Morphogenetic Protein 4 in a Mouse Critical-Sized Calvarial Defect Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marrow%20Stromal%20Cell-Based%20Cyclooxygenase%202%20Ex%20Vivo%20Gene-Transfer%20Strategy%20Surprisingly%20Lacks%20Bone-Regeneration%20Effects%20and%20Suppresses%20the%20Bone-Regeneration%20Action%20of%20Bone%20Morphogenetic%20Protein%204%20in%20a%20Mouse%20Critical-Sized%20Calvarial%20Defect%20Model&rft.jtitle=Calcified%20tissue%20international&rft.au=Lau,%20K.-H.%20William&rft.date=2009-10-01&rft.volume=85&rft.issue=4&rft.spage=356&rft.epage=367&rft.pages=356-367&rft.issn=0171-967X&rft.eissn=1432-0827&rft_id=info:doi/10.1007/s00223-009-9282-2&rft_dat=%3Cproquest_cross%3E1879883601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212993461&rft_id=info:pmid/19763374&rfr_iscdi=true |