Analysis of longitudinal randomized clinical trials using item response models

Abstract Patient-relevant outcomes, such as impairments, disability and health-related quality of life, are becoming increasingly popular as outcome measures in clinical research. These outcomes are generally assessed using questionnaires. In a longitudinal randomized clinical trial where the outcom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contemporary clinical trials 2009-03, Vol.30 (2), p.158-170
Hauptverfasser: Glas, Cees A.W, Geerlings, Hanneke, van de Laar, Mart A.F.J, Taal, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 2
container_start_page 158
container_title Contemporary clinical trials
container_volume 30
creator Glas, Cees A.W
Geerlings, Hanneke
van de Laar, Mart A.F.J
Taal, Erik
description Abstract Patient-relevant outcomes, such as impairments, disability and health-related quality of life, are becoming increasingly popular as outcome measures in clinical research. These outcomes are generally assessed using questionnaires. In a longitudinal randomized clinical trial where the outcome is measured by a questionnaire or some other instrument consisting of a set of discretely scored items, treatment effects can be analyzed using item response theory. The problem addressed is how to take the estimation error in the estimates of the latent outcome variables into account in the estimation of the treatment effects. Three approaches are compared: plausible value imputation (PVI), concurrent marginal maximum likelihood (MML) estimation and a limited information two-step marginal maximum likelihood method. The results show that the power of the former two methods to detect small and moderate effect sizes is considerably larger than the power of the latter approach. An additional advantage of the PVI method as compared to MML is that the treatment effects can be estimated with standard software. An example using data from a longitudinal randomized clinical trial illustrates the use of the methods in a practical setting. It is shown that even when responses on different sets of items for different groups of patients are used for the data analysis, the power to detect the experimental effects is comparable to the power obtained when responses to all items for all patients are used in the analysis. This creates considerable flexibility in the design and use of measures in experiments.
doi_str_mv 10.1016/j.cct.2008.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733920528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1551714408001535</els_id><sourcerecordid>733920528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-fceddfa7d47d89d1b15901f5dedc5b1957f7595002ca1801c03bb3235fc1638e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERT_gB3BBuSBOCTN2nA8hIVUVFKSqPRTOVmJPKi9JvHgSpOXX4-0uIHHgZGv0zIz9vEK8RCgQsHq7KaxdCgnQFCgLAPVEnKHWbS5BwdPHO-Y1luWpOGfeJKDSlX4mTrHFsmpbPBO3l3M37thzFoZsDPODX1bnUy2L3ezC5H-Sy-zoZ29TbYm-Gzlb2c8PmV9oyiLxNsxM2RQcjfxcnAyJoBfH80J8_fjhy9Wn_Obu-vPV5U1uywaWfLDk3NDVrqxd0zrsUbeAg3bkrO6x1fVQ61YDSNthA2hB9b2SSg8WK9WQuhBvDnO3MXxfiRczebY0jt1MYWVTK9VK0LJJJB5IGwNzpMFso5-6uDMIZm_RbEyyaPYWDUqTJKWeV8fpaz-R-9tx1JaA10eg4-RlSK6s5z-cRFnV8nH5uwOX1NAPT9Gw9TSn3_tIaakL_r_PeP9P9-8gvtGOeBPWmIJig4ZTg7nfx71PGxoA1EqrX2rbpOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733920528</pqid></control><display><type>article</type><title>Analysis of longitudinal randomized clinical trials using item response models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Glas, Cees A.W ; Geerlings, Hanneke ; van de Laar, Mart A.F.J ; Taal, Erik</creator><creatorcontrib>Glas, Cees A.W ; Geerlings, Hanneke ; van de Laar, Mart A.F.J ; Taal, Erik</creatorcontrib><description>Abstract Patient-relevant outcomes, such as impairments, disability and health-related quality of life, are becoming increasingly popular as outcome measures in clinical research. These outcomes are generally assessed using questionnaires. In a longitudinal randomized clinical trial where the outcome is measured by a questionnaire or some other instrument consisting of a set of discretely scored items, treatment effects can be analyzed using item response theory. The problem addressed is how to take the estimation error in the estimates of the latent outcome variables into account in the estimation of the treatment effects. Three approaches are compared: plausible value imputation (PVI), concurrent marginal maximum likelihood (MML) estimation and a limited information two-step marginal maximum likelihood method. The results show that the power of the former two methods to detect small and moderate effect sizes is considerably larger than the power of the latter approach. An additional advantage of the PVI method as compared to MML is that the treatment effects can be estimated with standard software. An example using data from a longitudinal randomized clinical trial illustrates the use of the methods in a practical setting. It is shown that even when responses on different sets of items for different groups of patients are used for the data analysis, the power to detect the experimental effects is comparable to the power obtained when responses to all items for all patients are used in the analysis. This creates considerable flexibility in the design and use of measures in experiments.</description><identifier>ISSN: 1551-7144</identifier><identifier>EISSN: 1559-2030</identifier><identifier>DOI: 10.1016/j.cct.2008.12.003</identifier><identifier>PMID: 19146991</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Biological and medical sciences ; Cardiovascular ; Clinical trial. Drug monitoring ; Data Interpretation, Statistical ; General pharmacology ; Health-related quality of life ; Hematology, Oncology and Palliative Medicine ; Humans ; Item response theory ; Likelihood Functions ; Linear Models ; Longitudinal Studies ; Marginal maximum likelihood estimation ; Medical sciences ; Models, Statistical ; Patient-relevant outcomes ; Pharmacology. Drug treatments ; Plausible value imputation ; Quality of Life ; Questionnaires ; Randomized Controlled Trials as Topic ; Sample Size ; Surveys and Questionnaires</subject><ispartof>Contemporary clinical trials, 2009-03, Vol.30 (2), p.158-170</ispartof><rights>Elsevier Inc.</rights><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-fceddfa7d47d89d1b15901f5dedc5b1957f7595002ca1801c03bb3235fc1638e3</citedby><cites>FETCH-LOGICAL-c480t-fceddfa7d47d89d1b15901f5dedc5b1957f7595002ca1801c03bb3235fc1638e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1551714408001535$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21267228$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19146991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glas, Cees A.W</creatorcontrib><creatorcontrib>Geerlings, Hanneke</creatorcontrib><creatorcontrib>van de Laar, Mart A.F.J</creatorcontrib><creatorcontrib>Taal, Erik</creatorcontrib><title>Analysis of longitudinal randomized clinical trials using item response models</title><title>Contemporary clinical trials</title><addtitle>Contemp Clin Trials</addtitle><description>Abstract Patient-relevant outcomes, such as impairments, disability and health-related quality of life, are becoming increasingly popular as outcome measures in clinical research. These outcomes are generally assessed using questionnaires. In a longitudinal randomized clinical trial where the outcome is measured by a questionnaire or some other instrument consisting of a set of discretely scored items, treatment effects can be analyzed using item response theory. The problem addressed is how to take the estimation error in the estimates of the latent outcome variables into account in the estimation of the treatment effects. Three approaches are compared: plausible value imputation (PVI), concurrent marginal maximum likelihood (MML) estimation and a limited information two-step marginal maximum likelihood method. The results show that the power of the former two methods to detect small and moderate effect sizes is considerably larger than the power of the latter approach. An additional advantage of the PVI method as compared to MML is that the treatment effects can be estimated with standard software. An example using data from a longitudinal randomized clinical trial illustrates the use of the methods in a practical setting. It is shown that even when responses on different sets of items for different groups of patients are used for the data analysis, the power to detect the experimental effects is comparable to the power obtained when responses to all items for all patients are used in the analysis. This creates considerable flexibility in the design and use of measures in experiments.</description><subject>Biological and medical sciences</subject><subject>Cardiovascular</subject><subject>Clinical trial. Drug monitoring</subject><subject>Data Interpretation, Statistical</subject><subject>General pharmacology</subject><subject>Health-related quality of life</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Item response theory</subject><subject>Likelihood Functions</subject><subject>Linear Models</subject><subject>Longitudinal Studies</subject><subject>Marginal maximum likelihood estimation</subject><subject>Medical sciences</subject><subject>Models, Statistical</subject><subject>Patient-relevant outcomes</subject><subject>Pharmacology. Drug treatments</subject><subject>Plausible value imputation</subject><subject>Quality of Life</subject><subject>Questionnaires</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Sample Size</subject><subject>Surveys and Questionnaires</subject><issn>1551-7144</issn><issn>1559-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi1ERT_gB3BBuSBOCTN2nA8hIVUVFKSqPRTOVmJPKi9JvHgSpOXX4-0uIHHgZGv0zIz9vEK8RCgQsHq7KaxdCgnQFCgLAPVEnKHWbS5BwdPHO-Y1luWpOGfeJKDSlX4mTrHFsmpbPBO3l3M37thzFoZsDPODX1bnUy2L3ezC5H-Sy-zoZ29TbYm-Gzlb2c8PmV9oyiLxNsxM2RQcjfxcnAyJoBfH80J8_fjhy9Wn_Obu-vPV5U1uywaWfLDk3NDVrqxd0zrsUbeAg3bkrO6x1fVQ61YDSNthA2hB9b2SSg8WK9WQuhBvDnO3MXxfiRczebY0jt1MYWVTK9VK0LJJJB5IGwNzpMFso5-6uDMIZm_RbEyyaPYWDUqTJKWeV8fpaz-R-9tx1JaA10eg4-RlSK6s5z-cRFnV8nH5uwOX1NAPT9Gw9TSn3_tIaakL_r_PeP9P9-8gvtGOeBPWmIJig4ZTg7nfx71PGxoA1EqrX2rbpOE</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Glas, Cees A.W</creator><creator>Geerlings, Hanneke</creator><creator>van de Laar, Mart A.F.J</creator><creator>Taal, Erik</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090301</creationdate><title>Analysis of longitudinal randomized clinical trials using item response models</title><author>Glas, Cees A.W ; Geerlings, Hanneke ; van de Laar, Mart A.F.J ; Taal, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-fceddfa7d47d89d1b15901f5dedc5b1957f7595002ca1801c03bb3235fc1638e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Cardiovascular</topic><topic>Clinical trial. Drug monitoring</topic><topic>Data Interpretation, Statistical</topic><topic>General pharmacology</topic><topic>Health-related quality of life</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Item response theory</topic><topic>Likelihood Functions</topic><topic>Linear Models</topic><topic>Longitudinal Studies</topic><topic>Marginal maximum likelihood estimation</topic><topic>Medical sciences</topic><topic>Models, Statistical</topic><topic>Patient-relevant outcomes</topic><topic>Pharmacology. Drug treatments</topic><topic>Plausible value imputation</topic><topic>Quality of Life</topic><topic>Questionnaires</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Sample Size</topic><topic>Surveys and Questionnaires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glas, Cees A.W</creatorcontrib><creatorcontrib>Geerlings, Hanneke</creatorcontrib><creatorcontrib>van de Laar, Mart A.F.J</creatorcontrib><creatorcontrib>Taal, Erik</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Contemporary clinical trials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glas, Cees A.W</au><au>Geerlings, Hanneke</au><au>van de Laar, Mart A.F.J</au><au>Taal, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of longitudinal randomized clinical trials using item response models</atitle><jtitle>Contemporary clinical trials</jtitle><addtitle>Contemp Clin Trials</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>30</volume><issue>2</issue><spage>158</spage><epage>170</epage><pages>158-170</pages><issn>1551-7144</issn><eissn>1559-2030</eissn><abstract>Abstract Patient-relevant outcomes, such as impairments, disability and health-related quality of life, are becoming increasingly popular as outcome measures in clinical research. These outcomes are generally assessed using questionnaires. In a longitudinal randomized clinical trial where the outcome is measured by a questionnaire or some other instrument consisting of a set of discretely scored items, treatment effects can be analyzed using item response theory. The problem addressed is how to take the estimation error in the estimates of the latent outcome variables into account in the estimation of the treatment effects. Three approaches are compared: plausible value imputation (PVI), concurrent marginal maximum likelihood (MML) estimation and a limited information two-step marginal maximum likelihood method. The results show that the power of the former two methods to detect small and moderate effect sizes is considerably larger than the power of the latter approach. An additional advantage of the PVI method as compared to MML is that the treatment effects can be estimated with standard software. An example using data from a longitudinal randomized clinical trial illustrates the use of the methods in a practical setting. It is shown that even when responses on different sets of items for different groups of patients are used for the data analysis, the power to detect the experimental effects is comparable to the power obtained when responses to all items for all patients are used in the analysis. This creates considerable flexibility in the design and use of measures in experiments.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>19146991</pmid><doi>10.1016/j.cct.2008.12.003</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1551-7144
ispartof Contemporary clinical trials, 2009-03, Vol.30 (2), p.158-170
issn 1551-7144
1559-2030
language eng
recordid cdi_proquest_miscellaneous_733920528
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biological and medical sciences
Cardiovascular
Clinical trial. Drug monitoring
Data Interpretation, Statistical
General pharmacology
Health-related quality of life
Hematology, Oncology and Palliative Medicine
Humans
Item response theory
Likelihood Functions
Linear Models
Longitudinal Studies
Marginal maximum likelihood estimation
Medical sciences
Models, Statistical
Patient-relevant outcomes
Pharmacology. Drug treatments
Plausible value imputation
Quality of Life
Questionnaires
Randomized Controlled Trials as Topic
Sample Size
Surveys and Questionnaires
title Analysis of longitudinal randomized clinical trials using item response models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20longitudinal%20randomized%20clinical%20trials%20using%20item%20response%20models&rft.jtitle=Contemporary%20clinical%20trials&rft.au=Glas,%20Cees%20A.W&rft.date=2009-03-01&rft.volume=30&rft.issue=2&rft.spage=158&rft.epage=170&rft.pages=158-170&rft.issn=1551-7144&rft.eissn=1559-2030&rft_id=info:doi/10.1016/j.cct.2008.12.003&rft_dat=%3Cproquest_cross%3E733920528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733920528&rft_id=info:pmid/19146991&rft_els_id=1_s2_0_S1551714408001535&rfr_iscdi=true