Repeated measures one-way ANOVA based on a modified one-step M-estimator
Wilcox, Keselman, Muska and Cribbie (2000) found a method for comparing the trimmed means of dependent groups that performed well in simulations, in terms of Type I errors, with a sample size as small as 21. Theory and simulations indicate that little power is lost under normality when using trimmed...
Gespeichert in:
Veröffentlicht in: | British journal of mathematical & statistical psychology 2003-05, Vol.56 (1), p.15-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | British journal of mathematical & statistical psychology |
container_volume | 56 |
creator | Wilcox, Rand R. Keselman, H. J. |
description | Wilcox, Keselman, Muska and Cribbie (2000) found a method for comparing the trimmed means of dependent groups that performed well in simulations, in terms of Type I errors, with a sample size as small as 21. Theory and simulations indicate that little power is lost under normality when using trimmed means rather than untrimmed means, and trimmed means can result in substantially higher power when sampling from a heavy‐tailed distribution. However, trimmed means suffer from two practical concerns described in this paper. Replacing trimmed means with a robust M‐estimator addresses these concerns, but control over the probability of a Type I error can be unsatisfactory when the sample size is small. Methods based on a simple modification of a one‐step M‐estimator that address the problems with trimmed means are examined. Several omnibus tests are compared, one of which performed well in simulations, even with a sample size of 11. |
doi_str_mv | 10.1348/000711003321645313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73390525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>348252871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4427-7270dc63c76d3019366555ec27611a9731a693ce5513bc2207da74607fa6790f3</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EoiHwD3BAKw7cDDMef2SPoSppoWnLZyUulrM7K23JZoOdVZv_HodEIMEBTtbIv_dG854QTxFeIunJKwBwiABECq02hHRPjBRoLSeE7r4Y7QCZCXUkHqV0A4DKgH0ojlBNgCZYjsTpB15z2HBddBzSEDkV_YrlbdgW04vLL9NiEVL-7FdFKLq-bpv258QybXhdzCWnTduFTR8fiwdNWCZ-cnjH4vObk0_Hp_L8cnZ2PD2XldbKSacc1JWlytmaAEuy1hjDlXIWMZSOMNiSKjYGaVEpBa4OTltwTbCuhIbG4sXedx3770Ne77s2VbxchhX3Q_KOqASjzD9BhejIocrg8z_Am36Iq3yE3-Wad5POkNpDVexTitz4dcyHx61H8Ls2_N9tZNGzg_Ow6Lj-LTnEnwG7B27bJW__w9K_nn-8yimNhdwL29zD3S9hiN-8zVcZf30x81-vZ-_eXun3fk4_AC19ntc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216460734</pqid></control><display><type>article</type><title>Repeated measures one-way ANOVA based on a modified one-step M-estimator</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wilcox, Rand R. ; Keselman, H. J.</creator><creatorcontrib>Wilcox, Rand R. ; Keselman, H. J.</creatorcontrib><description>Wilcox, Keselman, Muska and Cribbie (2000) found a method for comparing the trimmed means of dependent groups that performed well in simulations, in terms of Type I errors, with a sample size as small as 21. Theory and simulations indicate that little power is lost under normality when using trimmed means rather than untrimmed means, and trimmed means can result in substantially higher power when sampling from a heavy‐tailed distribution. However, trimmed means suffer from two practical concerns described in this paper. Replacing trimmed means with a robust M‐estimator addresses these concerns, but control over the probability of a Type I error can be unsatisfactory when the sample size is small. Methods based on a simple modification of a one‐step M‐estimator that address the problems with trimmed means are examined. Several omnibus tests are compared, one of which performed well in simulations, even with a sample size of 11.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1348/000711003321645313</identifier><identifier>PMID: 12803819</identifier><identifier>CODEN: BJMSAK</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analysis of Variance ; Mathematical analysis ; Mathematical models ; Models, Psychological ; Periodicity ; Psychology - methods ; Psychology - statistics & numerical data ; Variance analysis</subject><ispartof>British journal of mathematical & statistical psychology, 2003-05, Vol.56 (1), p.15-25</ispartof><rights>2003 The British Psychological Society</rights><rights>Copyright British Psychological Society May 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4427-7270dc63c76d3019366555ec27611a9731a693ce5513bc2207da74607fa6790f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1348%2F000711003321645313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1348%2F000711003321645313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12803819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, Rand R.</creatorcontrib><creatorcontrib>Keselman, H. J.</creatorcontrib><title>Repeated measures one-way ANOVA based on a modified one-step M-estimator</title><title>British journal of mathematical & statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>Wilcox, Keselman, Muska and Cribbie (2000) found a method for comparing the trimmed means of dependent groups that performed well in simulations, in terms of Type I errors, with a sample size as small as 21. Theory and simulations indicate that little power is lost under normality when using trimmed means rather than untrimmed means, and trimmed means can result in substantially higher power when sampling from a heavy‐tailed distribution. However, trimmed means suffer from two practical concerns described in this paper. Replacing trimmed means with a robust M‐estimator addresses these concerns, but control over the probability of a Type I error can be unsatisfactory when the sample size is small. Methods based on a simple modification of a one‐step M‐estimator that address the problems with trimmed means are examined. Several omnibus tests are compared, one of which performed well in simulations, even with a sample size of 11.</description><subject>Analysis of Variance</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Psychological</subject><subject>Periodicity</subject><subject>Psychology - methods</subject><subject>Psychology - statistics & numerical data</subject><subject>Variance analysis</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc1vEzEQxS0EoiHwD3BAKw7cDDMef2SPoSppoWnLZyUulrM7K23JZoOdVZv_HodEIMEBTtbIv_dG854QTxFeIunJKwBwiABECq02hHRPjBRoLSeE7r4Y7QCZCXUkHqV0A4DKgH0ojlBNgCZYjsTpB15z2HBddBzSEDkV_YrlbdgW04vLL9NiEVL-7FdFKLq-bpv258QybXhdzCWnTduFTR8fiwdNWCZ-cnjH4vObk0_Hp_L8cnZ2PD2XldbKSacc1JWlytmaAEuy1hjDlXIWMZSOMNiSKjYGaVEpBa4OTltwTbCuhIbG4sXedx3770Ne77s2VbxchhX3Q_KOqASjzD9BhejIocrg8z_Am36Iq3yE3-Wad5POkNpDVexTitz4dcyHx61H8Ls2_N9tZNGzg_Ow6Lj-LTnEnwG7B27bJW__w9K_nn-8yimNhdwL29zD3S9hiN-8zVcZf30x81-vZ-_eXun3fk4_AC19ntc</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Wilcox, Rand R.</creator><creator>Keselman, H. J.</creator><general>Blackwell Publishing Ltd</general><general>British Psychological Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200305</creationdate><title>Repeated measures one-way ANOVA based on a modified one-step M-estimator</title><author>Wilcox, Rand R. ; Keselman, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4427-7270dc63c76d3019366555ec27611a9731a693ce5513bc2207da74607fa6790f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analysis of Variance</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Psychological</topic><topic>Periodicity</topic><topic>Psychology - methods</topic><topic>Psychology - statistics & numerical data</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, Rand R.</creatorcontrib><creatorcontrib>Keselman, H. J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical & statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, Rand R.</au><au>Keselman, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repeated measures one-way ANOVA based on a modified one-step M-estimator</atitle><jtitle>British journal of mathematical & statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2003-05</date><risdate>2003</risdate><volume>56</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><coden>BJMSAK</coden><abstract>Wilcox, Keselman, Muska and Cribbie (2000) found a method for comparing the trimmed means of dependent groups that performed well in simulations, in terms of Type I errors, with a sample size as small as 21. Theory and simulations indicate that little power is lost under normality when using trimmed means rather than untrimmed means, and trimmed means can result in substantially higher power when sampling from a heavy‐tailed distribution. However, trimmed means suffer from two practical concerns described in this paper. Replacing trimmed means with a robust M‐estimator addresses these concerns, but control over the probability of a Type I error can be unsatisfactory when the sample size is small. Methods based on a simple modification of a one‐step M‐estimator that address the problems with trimmed means are examined. Several omnibus tests are compared, one of which performed well in simulations, even with a sample size of 11.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>12803819</pmid><doi>10.1348/000711003321645313</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1102 |
ispartof | British journal of mathematical & statistical psychology, 2003-05, Vol.56 (1), p.15-25 |
issn | 0007-1102 2044-8317 |
language | eng |
recordid | cdi_proquest_miscellaneous_73390525 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Analysis of Variance Mathematical analysis Mathematical models Models, Psychological Periodicity Psychology - methods Psychology - statistics & numerical data Variance analysis |
title | Repeated measures one-way ANOVA based on a modified one-step M-estimator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repeated%20measures%20one-way%20ANOVA%20based%20on%20a%20modified%20one-step%20M-estimator&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Wilcox,%20Rand%20R.&rft.date=2003-05&rft.volume=56&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=0007-1102&rft.eissn=2044-8317&rft.coden=BJMSAK&rft_id=info:doi/10.1348/000711003321645313&rft_dat=%3Cproquest_cross%3E348252871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216460734&rft_id=info:pmid/12803819&rfr_iscdi=true |