Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study

The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150 nm thick with a columnar contrast. Selected-ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2010, Vol.169 (1), p.1-5
Hauptverfasser: Kudo, Miki, Kameda, Jun, Saruwatari, Kazuko, Ozaki, Noriaki, Okano, Keiju, Nagasawa, Hiromichi, Kogure, Toshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 1
container_start_page 1
container_title Journal of structural biology
container_volume 169
creator Kudo, Miki
Kameda, Jun
Saruwatari, Kazuko
Ozaki, Noriaki
Okano, Keiju
Nagasawa, Hiromichi
Kogure, Toshihiro
description The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150 nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72 h after fertilization (the veliger stage), the shell grows up to 1.2–1.4 μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.
doi_str_mv 10.1016/j.jsb.2009.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733903921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847709001853</els_id><sourcerecordid>21238447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-9db93e2124b6c476835a6cfa8455c64a0a20a5c82c514d910bcee45f8e552e253</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0E4lH4ADYoK9iQMHbsOIYVVDwqtWJT1pbjTESiNCl2gujf46qV2LGaGencq9Eh5JJCQoFmd03S-CJhACoBmQDlB-SUghJxngl5uN25jHMu5Qk5874BAE4ZPSYnVGU0A6VOyXxRW9cP-DOMDqO-ilrjvk0b-U9s2-3db_yA7jaaOuN97weHJurq9brvzH30GL3MnuLl8yLyw1huzslRZVqPF_s5IR8vz8vpWzx_f51NH-ex5VwNsSoLlSKjjBeZ5TLLU2EyW5mcC2EzbsAwMMLmzArKS0WhsIhcVDkKwZCJdEJudr1r13-N6Ae9qr0ND5sO-9FrmaYKUsVoIK__JcMTac65DCDdgcGG9w4rvXb1yriNpqC3snWjg2y9la1B6iA7ZK725WOxwvIvsbcbgIcdgEHGd41Oe1tjZ7GsHdpBl339T_0vlqSN6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21238447</pqid></control><display><type>article</type><title>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kudo, Miki ; Kameda, Jun ; Saruwatari, Kazuko ; Ozaki, Noriaki ; Okano, Keiju ; Nagasawa, Hiromichi ; Kogure, Toshihiro</creator><creatorcontrib>Kudo, Miki ; Kameda, Jun ; Saruwatari, Kazuko ; Ozaki, Noriaki ; Okano, Keiju ; Nagasawa, Hiromichi ; Kogure, Toshihiro</creatorcontrib><description>The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150 nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72 h after fertilization (the veliger stage), the shell grows up to 1.2–1.4 μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2009.07.014</identifier><identifier>PMID: 19616099</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Aragonite ; Bivalvia ; Calcium Carbonate - chemistry ; Crassostrea - chemistry ; Crassostrea - ultrastructure ; Crassostrea nippona ; FIB-TEM ; Larva - chemistry ; Larva - ultrastructure ; Larval shell ; Marine ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Oyster ; {110} twin</subject><ispartof>Journal of structural biology, 2010, Vol.169 (1), p.1-5</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright (c) 2009 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-9db93e2124b6c476835a6cfa8455c64a0a20a5c82c514d910bcee45f8e552e253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsb.2009.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19616099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kudo, Miki</creatorcontrib><creatorcontrib>Kameda, Jun</creatorcontrib><creatorcontrib>Saruwatari, Kazuko</creatorcontrib><creatorcontrib>Ozaki, Noriaki</creatorcontrib><creatorcontrib>Okano, Keiju</creatorcontrib><creatorcontrib>Nagasawa, Hiromichi</creatorcontrib><creatorcontrib>Kogure, Toshihiro</creatorcontrib><title>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150 nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72 h after fertilization (the veliger stage), the shell grows up to 1.2–1.4 μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.</description><subject>Animals</subject><subject>Aragonite</subject><subject>Bivalvia</subject><subject>Calcium Carbonate - chemistry</subject><subject>Crassostrea - chemistry</subject><subject>Crassostrea - ultrastructure</subject><subject>Crassostrea nippona</subject><subject>FIB-TEM</subject><subject>Larva - chemistry</subject><subject>Larva - ultrastructure</subject><subject>Larval shell</subject><subject>Marine</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Oyster</subject><subject>{110} twin</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0E4lH4ADYoK9iQMHbsOIYVVDwqtWJT1pbjTESiNCl2gujf46qV2LGaGencq9Eh5JJCQoFmd03S-CJhACoBmQDlB-SUghJxngl5uN25jHMu5Qk5874BAE4ZPSYnVGU0A6VOyXxRW9cP-DOMDqO-ilrjvk0b-U9s2-3db_yA7jaaOuN97weHJurq9brvzH30GL3MnuLl8yLyw1huzslRZVqPF_s5IR8vz8vpWzx_f51NH-ex5VwNsSoLlSKjjBeZ5TLLU2EyW5mcC2EzbsAwMMLmzArKS0WhsIhcVDkKwZCJdEJudr1r13-N6Ae9qr0ND5sO-9FrmaYKUsVoIK__JcMTac65DCDdgcGG9w4rvXb1yriNpqC3snWjg2y9la1B6iA7ZK725WOxwvIvsbcbgIcdgEHGd41Oe1tjZ7GsHdpBl339T_0vlqSN6A</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kudo, Miki</creator><creator>Kameda, Jun</creator><creator>Saruwatari, Kazuko</creator><creator>Ozaki, Noriaki</creator><creator>Okano, Keiju</creator><creator>Nagasawa, Hiromichi</creator><creator>Kogure, Toshihiro</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</title><author>Kudo, Miki ; Kameda, Jun ; Saruwatari, Kazuko ; Ozaki, Noriaki ; Okano, Keiju ; Nagasawa, Hiromichi ; Kogure, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-9db93e2124b6c476835a6cfa8455c64a0a20a5c82c514d910bcee45f8e552e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Aragonite</topic><topic>Bivalvia</topic><topic>Calcium Carbonate - chemistry</topic><topic>Crassostrea - chemistry</topic><topic>Crassostrea - ultrastructure</topic><topic>Crassostrea nippona</topic><topic>FIB-TEM</topic><topic>Larva - chemistry</topic><topic>Larva - ultrastructure</topic><topic>Larval shell</topic><topic>Marine</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Oyster</topic><topic>{110} twin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Miki</creatorcontrib><creatorcontrib>Kameda, Jun</creatorcontrib><creatorcontrib>Saruwatari, Kazuko</creatorcontrib><creatorcontrib>Ozaki, Noriaki</creatorcontrib><creatorcontrib>Okano, Keiju</creatorcontrib><creatorcontrib>Nagasawa, Hiromichi</creatorcontrib><creatorcontrib>Kogure, Toshihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Miki</au><au>Kameda, Jun</au><au>Saruwatari, Kazuko</au><au>Ozaki, Noriaki</au><au>Okano, Keiju</au><au>Nagasawa, Hiromichi</au><au>Kogure, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2010</date><risdate>2010</risdate><volume>169</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150 nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72 h after fertilization (the veliger stage), the shell grows up to 1.2–1.4 μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19616099</pmid><doi>10.1016/j.jsb.2009.07.014</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2010, Vol.169 (1), p.1-5
issn 1047-8477
1095-8657
language eng
recordid cdi_proquest_miscellaneous_733903921
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Aragonite
Bivalvia
Calcium Carbonate - chemistry
Crassostrea - chemistry
Crassostrea - ultrastructure
Crassostrea nippona
FIB-TEM
Larva - chemistry
Larva - ultrastructure
Larval shell
Marine
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Oyster
{110} twin
title Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtexture%20of%20larval%20shell%20of%20oyster,%20Crassostrea%20nippona:%20A%20FIB-TEM%20study&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Kudo,%20Miki&rft.date=2010&rft.volume=169&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2009.07.014&rft_dat=%3Cproquest_cross%3E21238447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21238447&rft_id=info:pmid/19616099&rft_els_id=S1047847709001853&rfr_iscdi=true