Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study
The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150 nm thick with a columnar contrast. Selected-ar...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2010, Vol.169 (1), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of structural biology |
container_volume | 169 |
creator | Kudo, Miki Kameda, Jun Saruwatari, Kazuko Ozaki, Noriaki Okano, Keiju Nagasawa, Hiromichi Kogure, Toshihiro |
description | The initial formation and subsequent development of larval shells in marine bivalve,
Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150
nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the
c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72
h after fertilization (the veliger stage), the shell grows up to 1.2–1.4
μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their
c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the
c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite. |
doi_str_mv | 10.1016/j.jsb.2009.07.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733903921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847709001853</els_id><sourcerecordid>21238447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-9db93e2124b6c476835a6cfa8455c64a0a20a5c82c514d910bcee45f8e552e253</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0E4lH4ADYoK9iQMHbsOIYVVDwqtWJT1pbjTESiNCl2gujf46qV2LGaGencq9Eh5JJCQoFmd03S-CJhACoBmQDlB-SUghJxngl5uN25jHMu5Qk5874BAE4ZPSYnVGU0A6VOyXxRW9cP-DOMDqO-ilrjvk0b-U9s2-3db_yA7jaaOuN97weHJurq9brvzH30GL3MnuLl8yLyw1huzslRZVqPF_s5IR8vz8vpWzx_f51NH-ex5VwNsSoLlSKjjBeZ5TLLU2EyW5mcC2EzbsAwMMLmzArKS0WhsIhcVDkKwZCJdEJudr1r13-N6Ae9qr0ND5sO-9FrmaYKUsVoIK__JcMTac65DCDdgcGG9w4rvXb1yriNpqC3snWjg2y9la1B6iA7ZK725WOxwvIvsbcbgIcdgEHGd41Oe1tjZ7GsHdpBl339T_0vlqSN6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21238447</pqid></control><display><type>article</type><title>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kudo, Miki ; Kameda, Jun ; Saruwatari, Kazuko ; Ozaki, Noriaki ; Okano, Keiju ; Nagasawa, Hiromichi ; Kogure, Toshihiro</creator><creatorcontrib>Kudo, Miki ; Kameda, Jun ; Saruwatari, Kazuko ; Ozaki, Noriaki ; Okano, Keiju ; Nagasawa, Hiromichi ; Kogure, Toshihiro</creatorcontrib><description>The initial formation and subsequent development of larval shells in marine bivalve,
Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150
nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the
c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72
h after fertilization (the veliger stage), the shell grows up to 1.2–1.4
μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their
c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the
c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2009.07.014</identifier><identifier>PMID: 19616099</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Aragonite ; Bivalvia ; Calcium Carbonate - chemistry ; Crassostrea - chemistry ; Crassostrea - ultrastructure ; Crassostrea nippona ; FIB-TEM ; Larva - chemistry ; Larva - ultrastructure ; Larval shell ; Marine ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Oyster ; {110} twin</subject><ispartof>Journal of structural biology, 2010, Vol.169 (1), p.1-5</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright (c) 2009 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-9db93e2124b6c476835a6cfa8455c64a0a20a5c82c514d910bcee45f8e552e253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsb.2009.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19616099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kudo, Miki</creatorcontrib><creatorcontrib>Kameda, Jun</creatorcontrib><creatorcontrib>Saruwatari, Kazuko</creatorcontrib><creatorcontrib>Ozaki, Noriaki</creatorcontrib><creatorcontrib>Okano, Keiju</creatorcontrib><creatorcontrib>Nagasawa, Hiromichi</creatorcontrib><creatorcontrib>Kogure, Toshihiro</creatorcontrib><title>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>The initial formation and subsequent development of larval shells in marine bivalve,
Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150
nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the
c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72
h after fertilization (the veliger stage), the shell grows up to 1.2–1.4
μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their
c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the
c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.</description><subject>Animals</subject><subject>Aragonite</subject><subject>Bivalvia</subject><subject>Calcium Carbonate - chemistry</subject><subject>Crassostrea - chemistry</subject><subject>Crassostrea - ultrastructure</subject><subject>Crassostrea nippona</subject><subject>FIB-TEM</subject><subject>Larva - chemistry</subject><subject>Larva - ultrastructure</subject><subject>Larval shell</subject><subject>Marine</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Oyster</subject><subject>{110} twin</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0E4lH4ADYoK9iQMHbsOIYVVDwqtWJT1pbjTESiNCl2gujf46qV2LGaGencq9Eh5JJCQoFmd03S-CJhACoBmQDlB-SUghJxngl5uN25jHMu5Qk5874BAE4ZPSYnVGU0A6VOyXxRW9cP-DOMDqO-ilrjvk0b-U9s2-3db_yA7jaaOuN97weHJurq9brvzH30GL3MnuLl8yLyw1huzslRZVqPF_s5IR8vz8vpWzx_f51NH-ex5VwNsSoLlSKjjBeZ5TLLU2EyW5mcC2EzbsAwMMLmzArKS0WhsIhcVDkKwZCJdEJudr1r13-N6Ae9qr0ND5sO-9FrmaYKUsVoIK__JcMTac65DCDdgcGG9w4rvXb1yriNpqC3snWjg2y9la1B6iA7ZK725WOxwvIvsbcbgIcdgEHGd41Oe1tjZ7GsHdpBl339T_0vlqSN6A</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kudo, Miki</creator><creator>Kameda, Jun</creator><creator>Saruwatari, Kazuko</creator><creator>Ozaki, Noriaki</creator><creator>Okano, Keiju</creator><creator>Nagasawa, Hiromichi</creator><creator>Kogure, Toshihiro</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</title><author>Kudo, Miki ; Kameda, Jun ; Saruwatari, Kazuko ; Ozaki, Noriaki ; Okano, Keiju ; Nagasawa, Hiromichi ; Kogure, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-9db93e2124b6c476835a6cfa8455c64a0a20a5c82c514d910bcee45f8e552e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Aragonite</topic><topic>Bivalvia</topic><topic>Calcium Carbonate - chemistry</topic><topic>Crassostrea - chemistry</topic><topic>Crassostrea - ultrastructure</topic><topic>Crassostrea nippona</topic><topic>FIB-TEM</topic><topic>Larva - chemistry</topic><topic>Larva - ultrastructure</topic><topic>Larval shell</topic><topic>Marine</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Oyster</topic><topic>{110} twin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Miki</creatorcontrib><creatorcontrib>Kameda, Jun</creatorcontrib><creatorcontrib>Saruwatari, Kazuko</creatorcontrib><creatorcontrib>Ozaki, Noriaki</creatorcontrib><creatorcontrib>Okano, Keiju</creatorcontrib><creatorcontrib>Nagasawa, Hiromichi</creatorcontrib><creatorcontrib>Kogure, Toshihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Miki</au><au>Kameda, Jun</au><au>Saruwatari, Kazuko</au><au>Ozaki, Noriaki</au><au>Okano, Keiju</au><au>Nagasawa, Hiromichi</au><au>Kogure, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2010</date><risdate>2010</risdate><volume>169</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>The initial formation and subsequent development of larval shells in marine bivalve,
Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150
nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the
c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72
h after fertilization (the veliger stage), the shell grows up to 1.2–1.4
μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their
c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the
c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19616099</pmid><doi>10.1016/j.jsb.2009.07.014</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8477 |
ispartof | Journal of structural biology, 2010, Vol.169 (1), p.1-5 |
issn | 1047-8477 1095-8657 |
language | eng |
recordid | cdi_proquest_miscellaneous_733903921 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Aragonite Bivalvia Calcium Carbonate - chemistry Crassostrea - chemistry Crassostrea - ultrastructure Crassostrea nippona FIB-TEM Larva - chemistry Larva - ultrastructure Larval shell Marine Microscopy, Electron, Scanning Microscopy, Electron, Transmission Oyster {110} twin |
title | Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtexture%20of%20larval%20shell%20of%20oyster,%20Crassostrea%20nippona:%20A%20FIB-TEM%20study&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Kudo,%20Miki&rft.date=2010&rft.volume=169&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2009.07.014&rft_dat=%3Cproquest_cross%3E21238447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21238447&rft_id=info:pmid/19616099&rft_els_id=S1047847709001853&rfr_iscdi=true |