Context, Learning, and Extinction

A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological review 2010-01, Vol.117 (1), p.197-209
Hauptverfasser: Gershman, Samuel J, Blei, David M, Niv, Yael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 1
container_start_page 197
container_title Psychological review
container_volume 117
creator Gershman, Samuel J
Blei, David M
Niv, Yael
description A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.
doi_str_mv 10.1037/a0017808
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733888341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ871453</ericid><sourcerecordid>733888341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-c3e5303d7f9057cc240ca95ff7b1a40e164d5f0d1ab1db1808a81066d0a533a13</originalsourceid><addsrcrecordid>eNp90EFrGzEQBWAREhI3DfQHlOIUSnrwpjM72pV0LMZNUgy5JJCbGGu1ZcNa60rrkvz7rrGdQA7RZQ76eDyeEJ8QLhFI_WAAVBr0gRihIZOhVHgoRgBEWW6KhxPxIaVHGB4acyxOcoCSTKlH4nzahd4_9ZPx3HMMTfgzGXOoxrOnvgmub7rwURzV3CZ_trun4v7X7G56nc1vr26mP-cZS1R95sgXBFSp2kChnMslODZFXasFsgSPpayKGirkBVYLHMqyRijLCrggYqRTcbHNXcXu79qn3i6b5HzbcvDdOllFpLUmuZFf38jHbh3DUM6WKAvMc9TvoRxljkaWxYC-b5GLXUrR13YVmyXHZ4tgN8va_bID_bLLWy-WvnqB-ykH8G0HODlu68jBNenV5UQKUQ7u89b52LiX79lvrYbu9BrDK7ar9Ow49o1rfbLR_7OIyqJFo-g_FyKRSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614512218</pqid></control><display><type>article</type><title>Context, Learning, and Extinction</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Gershman, Samuel J ; Blei, David M ; Niv, Yael</creator><creatorcontrib>Gershman, Samuel J ; Blei, David M ; Niv, Yael</creatorcontrib><description>A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/a0017808</identifier><identifier>PMID: 20063968</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Anatomical correlates of behavior ; Animal ; Animals ; Bayes Theorem ; Bayesian Statistics ; Behavioral psychophysiology ; Biological and medical sciences ; Classical Conditioning ; Cluster Grouping ; Conditioning ; Conditioning, Classical ; Contextual Associations ; Cues ; Experimental psychology ; Experiments ; Extinction (Learning) ; Extinction, Psychological ; Fundamental and applied biological sciences. Psychology ; Hippocampus ; Hippocampus - physiology ; Human ; Humans ; Inferences ; Latent Inhibition ; Learning ; Learning Processes ; Learning. Memory ; Markov Processes ; Models, Psychological ; Monte Carlo Methods ; Probability ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reinforcement ; Semantics ; Statistical Inference ; Stimuli</subject><ispartof>Psychological review, 2010-01, Vol.117 (1), p.197-209</ispartof><rights>2010 American Psychological Association</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Psychological Association Jan 2010</rights><rights>2010, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-c3e5303d7f9057cc240ca95ff7b1a40e164d5f0d1ab1db1808a81066d0a533a13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ871453$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22337114$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20063968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gershman, Samuel J</creatorcontrib><creatorcontrib>Blei, David M</creatorcontrib><creatorcontrib>Niv, Yael</creatorcontrib><title>Context, Learning, and Extinction</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.</description><subject>Anatomical correlates of behavior</subject><subject>Animal</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian Statistics</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Classical Conditioning</subject><subject>Cluster Grouping</subject><subject>Conditioning</subject><subject>Conditioning, Classical</subject><subject>Contextual Associations</subject><subject>Cues</subject><subject>Experimental psychology</subject><subject>Experiments</subject><subject>Extinction (Learning)</subject><subject>Extinction, Psychological</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Human</subject><subject>Humans</subject><subject>Inferences</subject><subject>Latent Inhibition</subject><subject>Learning</subject><subject>Learning Processes</subject><subject>Learning. Memory</subject><subject>Markov Processes</subject><subject>Models, Psychological</subject><subject>Monte Carlo Methods</subject><subject>Probability</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reinforcement</subject><subject>Semantics</subject><subject>Statistical Inference</subject><subject>Stimuli</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EFrGzEQBWAREhI3DfQHlOIUSnrwpjM72pV0LMZNUgy5JJCbGGu1ZcNa60rrkvz7rrGdQA7RZQ76eDyeEJ8QLhFI_WAAVBr0gRihIZOhVHgoRgBEWW6KhxPxIaVHGB4acyxOcoCSTKlH4nzahd4_9ZPx3HMMTfgzGXOoxrOnvgmub7rwURzV3CZ_trun4v7X7G56nc1vr26mP-cZS1R95sgXBFSp2kChnMslODZFXasFsgSPpayKGirkBVYLHMqyRijLCrggYqRTcbHNXcXu79qn3i6b5HzbcvDdOllFpLUmuZFf38jHbh3DUM6WKAvMc9TvoRxljkaWxYC-b5GLXUrR13YVmyXHZ4tgN8va_bID_bLLWy-WvnqB-ykH8G0HODlu68jBNenV5UQKUQ7u89b52LiX79lvrYbu9BrDK7ar9Ow49o1rfbLR_7OIyqJFo-g_FyKRSg</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Gershman, Samuel J</creator><creator>Blei, David M</creator><creator>Niv, Yael</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope></search><sort><creationdate>201001</creationdate><title>Context, Learning, and Extinction</title><author>Gershman, Samuel J ; Blei, David M ; Niv, Yael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-c3e5303d7f9057cc240ca95ff7b1a40e164d5f0d1ab1db1808a81066d0a533a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anatomical correlates of behavior</topic><topic>Animal</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian Statistics</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Classical Conditioning</topic><topic>Cluster Grouping</topic><topic>Conditioning</topic><topic>Conditioning, Classical</topic><topic>Contextual Associations</topic><topic>Cues</topic><topic>Experimental psychology</topic><topic>Experiments</topic><topic>Extinction (Learning)</topic><topic>Extinction, Psychological</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Human</topic><topic>Humans</topic><topic>Inferences</topic><topic>Latent Inhibition</topic><topic>Learning</topic><topic>Learning Processes</topic><topic>Learning. Memory</topic><topic>Markov Processes</topic><topic>Models, Psychological</topic><topic>Monte Carlo Methods</topic><topic>Probability</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reinforcement</topic><topic>Semantics</topic><topic>Statistical Inference</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gershman, Samuel J</creatorcontrib><creatorcontrib>Blei, David M</creatorcontrib><creatorcontrib>Niv, Yael</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>PsycArticles</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gershman, Samuel J</au><au>Blei, David M</au><au>Niv, Yael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ871453</ericid><atitle>Context, Learning, and Extinction</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2010-01</date><risdate>2010</risdate><volume>117</volume><issue>1</issue><spage>197</spage><epage>209</epage><pages>197-209</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>20063968</pmid><doi>10.1037/a0017808</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-295X
ispartof Psychological review, 2010-01, Vol.117 (1), p.197-209
issn 0033-295X
1939-1471
language eng
recordid cdi_proquest_miscellaneous_733888341
source MEDLINE; EBSCOhost APA PsycARTICLES
subjects Anatomical correlates of behavior
Animal
Animals
Bayes Theorem
Bayesian Statistics
Behavioral psychophysiology
Biological and medical sciences
Classical Conditioning
Cluster Grouping
Conditioning
Conditioning, Classical
Contextual Associations
Cues
Experimental psychology
Experiments
Extinction (Learning)
Extinction, Psychological
Fundamental and applied biological sciences. Psychology
Hippocampus
Hippocampus - physiology
Human
Humans
Inferences
Latent Inhibition
Learning
Learning Processes
Learning. Memory
Markov Processes
Models, Psychological
Monte Carlo Methods
Probability
Psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Reinforcement
Semantics
Statistical Inference
Stimuli
title Context, Learning, and Extinction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context,%20Learning,%20and%20Extinction&rft.jtitle=Psychological%20review&rft.au=Gershman,%20Samuel%20J&rft.date=2010-01&rft.volume=117&rft.issue=1&rft.spage=197&rft.epage=209&rft.pages=197-209&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/a0017808&rft_dat=%3Cproquest_cross%3E733888341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614512218&rft_id=info:pmid/20063968&rft_ericid=EJ871453&rfr_iscdi=true