Context, Learning, and Extinction
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of th...
Gespeichert in:
Veröffentlicht in: | Psychological review 2010-01, Vol.117 (1), p.197-209 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 1 |
container_start_page | 197 |
container_title | Psychological review |
container_volume | 117 |
creator | Gershman, Samuel J Blei, David M Niv, Yael |
description | A. Redish et al. (2007)
proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes. |
doi_str_mv | 10.1037/a0017808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733888341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ871453</ericid><sourcerecordid>733888341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-c3e5303d7f9057cc240ca95ff7b1a40e164d5f0d1ab1db1808a81066d0a533a13</originalsourceid><addsrcrecordid>eNp90EFrGzEQBWAREhI3DfQHlOIUSnrwpjM72pV0LMZNUgy5JJCbGGu1ZcNa60rrkvz7rrGdQA7RZQ76eDyeEJ8QLhFI_WAAVBr0gRihIZOhVHgoRgBEWW6KhxPxIaVHGB4acyxOcoCSTKlH4nzahd4_9ZPx3HMMTfgzGXOoxrOnvgmub7rwURzV3CZ_trun4v7X7G56nc1vr26mP-cZS1R95sgXBFSp2kChnMslODZFXasFsgSPpayKGirkBVYLHMqyRijLCrggYqRTcbHNXcXu79qn3i6b5HzbcvDdOllFpLUmuZFf38jHbh3DUM6WKAvMc9TvoRxljkaWxYC-b5GLXUrR13YVmyXHZ4tgN8va_bID_bLLWy-WvnqB-ykH8G0HODlu68jBNenV5UQKUQ7u89b52LiX79lvrYbu9BrDK7ar9Ow49o1rfbLR_7OIyqJFo-g_FyKRSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614512218</pqid></control><display><type>article</type><title>Context, Learning, and Extinction</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Gershman, Samuel J ; Blei, David M ; Niv, Yael</creator><creatorcontrib>Gershman, Samuel J ; Blei, David M ; Niv, Yael</creatorcontrib><description>A. Redish et al. (2007)
proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/a0017808</identifier><identifier>PMID: 20063968</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Anatomical correlates of behavior ; Animal ; Animals ; Bayes Theorem ; Bayesian Statistics ; Behavioral psychophysiology ; Biological and medical sciences ; Classical Conditioning ; Cluster Grouping ; Conditioning ; Conditioning, Classical ; Contextual Associations ; Cues ; Experimental psychology ; Experiments ; Extinction (Learning) ; Extinction, Psychological ; Fundamental and applied biological sciences. Psychology ; Hippocampus ; Hippocampus - physiology ; Human ; Humans ; Inferences ; Latent Inhibition ; Learning ; Learning Processes ; Learning. Memory ; Markov Processes ; Models, Psychological ; Monte Carlo Methods ; Probability ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reinforcement ; Semantics ; Statistical Inference ; Stimuli</subject><ispartof>Psychological review, 2010-01, Vol.117 (1), p.197-209</ispartof><rights>2010 American Psychological Association</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Psychological Association Jan 2010</rights><rights>2010, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-c3e5303d7f9057cc240ca95ff7b1a40e164d5f0d1ab1db1808a81066d0a533a13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ871453$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22337114$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20063968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gershman, Samuel J</creatorcontrib><creatorcontrib>Blei, David M</creatorcontrib><creatorcontrib>Niv, Yael</creatorcontrib><title>Context, Learning, and Extinction</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>A. Redish et al. (2007)
proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.</description><subject>Anatomical correlates of behavior</subject><subject>Animal</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian Statistics</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Classical Conditioning</subject><subject>Cluster Grouping</subject><subject>Conditioning</subject><subject>Conditioning, Classical</subject><subject>Contextual Associations</subject><subject>Cues</subject><subject>Experimental psychology</subject><subject>Experiments</subject><subject>Extinction (Learning)</subject><subject>Extinction, Psychological</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Human</subject><subject>Humans</subject><subject>Inferences</subject><subject>Latent Inhibition</subject><subject>Learning</subject><subject>Learning Processes</subject><subject>Learning. Memory</subject><subject>Markov Processes</subject><subject>Models, Psychological</subject><subject>Monte Carlo Methods</subject><subject>Probability</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reinforcement</subject><subject>Semantics</subject><subject>Statistical Inference</subject><subject>Stimuli</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EFrGzEQBWAREhI3DfQHlOIUSnrwpjM72pV0LMZNUgy5JJCbGGu1ZcNa60rrkvz7rrGdQA7RZQ76eDyeEJ8QLhFI_WAAVBr0gRihIZOhVHgoRgBEWW6KhxPxIaVHGB4acyxOcoCSTKlH4nzahd4_9ZPx3HMMTfgzGXOoxrOnvgmub7rwURzV3CZ_trun4v7X7G56nc1vr26mP-cZS1R95sgXBFSp2kChnMslODZFXasFsgSPpayKGirkBVYLHMqyRijLCrggYqRTcbHNXcXu79qn3i6b5HzbcvDdOllFpLUmuZFf38jHbh3DUM6WKAvMc9TvoRxljkaWxYC-b5GLXUrR13YVmyXHZ4tgN8va_bID_bLLWy-WvnqB-ykH8G0HODlu68jBNenV5UQKUQ7u89b52LiX79lvrYbu9BrDK7ar9Ow49o1rfbLR_7OIyqJFo-g_FyKRSg</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Gershman, Samuel J</creator><creator>Blei, David M</creator><creator>Niv, Yael</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope></search><sort><creationdate>201001</creationdate><title>Context, Learning, and Extinction</title><author>Gershman, Samuel J ; Blei, David M ; Niv, Yael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-c3e5303d7f9057cc240ca95ff7b1a40e164d5f0d1ab1db1808a81066d0a533a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anatomical correlates of behavior</topic><topic>Animal</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian Statistics</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Classical Conditioning</topic><topic>Cluster Grouping</topic><topic>Conditioning</topic><topic>Conditioning, Classical</topic><topic>Contextual Associations</topic><topic>Cues</topic><topic>Experimental psychology</topic><topic>Experiments</topic><topic>Extinction (Learning)</topic><topic>Extinction, Psychological</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Human</topic><topic>Humans</topic><topic>Inferences</topic><topic>Latent Inhibition</topic><topic>Learning</topic><topic>Learning Processes</topic><topic>Learning. Memory</topic><topic>Markov Processes</topic><topic>Models, Psychological</topic><topic>Monte Carlo Methods</topic><topic>Probability</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reinforcement</topic><topic>Semantics</topic><topic>Statistical Inference</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gershman, Samuel J</creatorcontrib><creatorcontrib>Blei, David M</creatorcontrib><creatorcontrib>Niv, Yael</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>PsycArticles</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gershman, Samuel J</au><au>Blei, David M</au><au>Niv, Yael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ871453</ericid><atitle>Context, Learning, and Extinction</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2010-01</date><risdate>2010</risdate><volume>117</volume><issue>1</issue><spage>197</spage><epage>209</epage><pages>197-209</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>A. Redish et al. (2007)
proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual manipulations have been studied extensively, and show that online Bayesian inference within a model that assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms, context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The authors suggest an explanation in terms of a restricted capacity to infer new causes.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>20063968</pmid><doi>10.1037/a0017808</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-295X |
ispartof | Psychological review, 2010-01, Vol.117 (1), p.197-209 |
issn | 0033-295X 1939-1471 |
language | eng |
recordid | cdi_proquest_miscellaneous_733888341 |
source | MEDLINE; EBSCOhost APA PsycARTICLES |
subjects | Anatomical correlates of behavior Animal Animals Bayes Theorem Bayesian Statistics Behavioral psychophysiology Biological and medical sciences Classical Conditioning Cluster Grouping Conditioning Conditioning, Classical Contextual Associations Cues Experimental psychology Experiments Extinction (Learning) Extinction, Psychological Fundamental and applied biological sciences. Psychology Hippocampus Hippocampus - physiology Human Humans Inferences Latent Inhibition Learning Learning Processes Learning. Memory Markov Processes Models, Psychological Monte Carlo Methods Probability Psychology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Reinforcement Semantics Statistical Inference Stimuli |
title | Context, Learning, and Extinction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context,%20Learning,%20and%20Extinction&rft.jtitle=Psychological%20review&rft.au=Gershman,%20Samuel%20J&rft.date=2010-01&rft.volume=117&rft.issue=1&rft.spage=197&rft.epage=209&rft.pages=197-209&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/a0017808&rft_dat=%3Cproquest_cross%3E733888341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614512218&rft_id=info:pmid/20063968&rft_ericid=EJ871453&rfr_iscdi=true |