Probing a Century Old Prediction One Plasmonic Particle at a Time
In 1908, Gustav Mie solved Maxwell’s equations to account for the absorption and scattering of spherical plasmonic particles. Since then much attention has been devoted to the size dependent optical properties of metallic nanoparticles. However, ensemble measurements of colloidal solutions generally...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-04, Vol.10 (4), p.1398-1404 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1404 |
---|---|
container_issue | 4 |
container_start_page | 1398 |
container_title | Nano letters |
container_volume | 10 |
creator | Tcherniak, A Ha, J. W Dominguez-Medina, S Slaughter, L. S Link, S |
description | In 1908, Gustav Mie solved Maxwell’s equations to account for the absorption and scattering of spherical plasmonic particles. Since then much attention has been devoted to the size dependent optical properties of metallic nanoparticles. However, ensemble measurements of colloidal solutions generally only yield the total extinction cross sections of the nanoparticles. Here, we show how Mie’s prediction on the size dependence of the surface absorption and scattering can be probed separately for the same gold nanoparticle by using two single particle spectroscopy techniques, (1) dark-field scattering and (2) photothermal imaging, which selectively only measure scattering and absorption, respectively. Combining the optical measurements with correlated scanning electron microscopy furthermore allowed us to measure the size of the spherical gold nanoparticles, which ranged from 43 to 274 nm in diameter. We found that even though the trend predicted by Mie theory is followed well by the experimental data over a large range of nanoparticle diameters, for small size variations changes in scattering and absorption intensities are dominated by factors other than those considered by Mie theory. In particular, spectral shifts of the plasmon resonance due to deviations from a spherical particle shape alone cannot explain the observed variation in absorption and scattering intensities. |
doi_str_mv | 10.1021/nl100199h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733884063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733884063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-4c782757a622b1d39c6127978b1fa99fee8b08cb16ca014e432900d8a1d27a063</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgSgUBv4A8oIQQ8AfiWOPVcWXVKkZyhxdHAdcOU6xk6H_nqCWdmG6G557T3oRuqHkkRJGn7yjhFClvk7QBc04SYRS7PSwy3SCLmNcE0IUz8g5mrBRiyxjF2hWhK6y_hMDnhvfD2GLl67GRTC11b3tPF56gwsHse281biA0FvtDIZ-PFnZ1lyhswZcNNf7OUUfL8-r-VuyWL6-z2eLBFJK-iTVuWR5loNgrKI1V1pQlqtcVrQBpRpjZEWkrqjQQGhqUs4UIbUEWrMciOBTdL_L3YTuezCxL1sbtXEOvOmGWOacS5mOcJQPO6lDF2MwTbkJtoWwLSkpfwsrD4WN9nafOlStqQ_yr6ER3O0BRA2uCeC1jUfHBBdUiqMDHct1NwQ_lvHPwx8ZBXwl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733884063</pqid></control><display><type>article</type><title>Probing a Century Old Prediction One Plasmonic Particle at a Time</title><source>MEDLINE</source><source>ACS Publications</source><creator>Tcherniak, A ; Ha, J. W ; Dominguez-Medina, S ; Slaughter, L. S ; Link, S</creator><creatorcontrib>Tcherniak, A ; Ha, J. W ; Dominguez-Medina, S ; Slaughter, L. S ; Link, S</creatorcontrib><description>In 1908, Gustav Mie solved Maxwell’s equations to account for the absorption and scattering of spherical plasmonic particles. Since then much attention has been devoted to the size dependent optical properties of metallic nanoparticles. However, ensemble measurements of colloidal solutions generally only yield the total extinction cross sections of the nanoparticles. Here, we show how Mie’s prediction on the size dependence of the surface absorption and scattering can be probed separately for the same gold nanoparticle by using two single particle spectroscopy techniques, (1) dark-field scattering and (2) photothermal imaging, which selectively only measure scattering and absorption, respectively. Combining the optical measurements with correlated scanning electron microscopy furthermore allowed us to measure the size of the spherical gold nanoparticles, which ranged from 43 to 274 nm in diameter. We found that even though the trend predicted by Mie theory is followed well by the experimental data over a large range of nanoparticle diameters, for small size variations changes in scattering and absorption intensities are dominated by factors other than those considered by Mie theory. In particular, spectral shifts of the plasmon resonance due to deviations from a spherical particle shape alone cannot explain the observed variation in absorption and scattering intensities.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl100199h</identifier><identifier>PMID: 20196552</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Gold - chemistry ; Materials science ; Metal Nanoparticles - chemistry ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Physics ; Surface and interface electron states ; Surface Plasmon Resonance - methods ; Surface Properties</subject><ispartof>Nano letters, 2010-04, Vol.10 (4), p.1398-1404</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-4c782757a622b1d39c6127978b1fa99fee8b08cb16ca014e432900d8a1d27a063</citedby><cites>FETCH-LOGICAL-a410t-4c782757a622b1d39c6127978b1fa99fee8b08cb16ca014e432900d8a1d27a063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl100199h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl100199h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22636186$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20196552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tcherniak, A</creatorcontrib><creatorcontrib>Ha, J. W</creatorcontrib><creatorcontrib>Dominguez-Medina, S</creatorcontrib><creatorcontrib>Slaughter, L. S</creatorcontrib><creatorcontrib>Link, S</creatorcontrib><title>Probing a Century Old Prediction One Plasmonic Particle at a Time</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>In 1908, Gustav Mie solved Maxwell’s equations to account for the absorption and scattering of spherical plasmonic particles. Since then much attention has been devoted to the size dependent optical properties of metallic nanoparticles. However, ensemble measurements of colloidal solutions generally only yield the total extinction cross sections of the nanoparticles. Here, we show how Mie’s prediction on the size dependence of the surface absorption and scattering can be probed separately for the same gold nanoparticle by using two single particle spectroscopy techniques, (1) dark-field scattering and (2) photothermal imaging, which selectively only measure scattering and absorption, respectively. Combining the optical measurements with correlated scanning electron microscopy furthermore allowed us to measure the size of the spherical gold nanoparticles, which ranged from 43 to 274 nm in diameter. We found that even though the trend predicted by Mie theory is followed well by the experimental data over a large range of nanoparticle diameters, for small size variations changes in scattering and absorption intensities are dominated by factors other than those considered by Mie theory. In particular, spectral shifts of the plasmon resonance due to deviations from a spherical particle shape alone cannot explain the observed variation in absorption and scattering intensities.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Gold - chemistry</subject><subject>Materials science</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Surface Properties</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0D1PwzAQBmALgSgUBv4A8oIQQ8AfiWOPVcWXVKkZyhxdHAdcOU6xk6H_nqCWdmG6G557T3oRuqHkkRJGn7yjhFClvk7QBc04SYRS7PSwy3SCLmNcE0IUz8g5mrBRiyxjF2hWhK6y_hMDnhvfD2GLl67GRTC11b3tPF56gwsHse281biA0FvtDIZ-PFnZ1lyhswZcNNf7OUUfL8-r-VuyWL6-z2eLBFJK-iTVuWR5loNgrKI1V1pQlqtcVrQBpRpjZEWkrqjQQGhqUs4UIbUEWrMciOBTdL_L3YTuezCxL1sbtXEOvOmGWOacS5mOcJQPO6lDF2MwTbkJtoWwLSkpfwsrD4WN9nafOlStqQ_yr6ER3O0BRA2uCeC1jUfHBBdUiqMDHct1NwQ_lvHPwx8ZBXwl</recordid><startdate>20100414</startdate><enddate>20100414</enddate><creator>Tcherniak, A</creator><creator>Ha, J. W</creator><creator>Dominguez-Medina, S</creator><creator>Slaughter, L. S</creator><creator>Link, S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100414</creationdate><title>Probing a Century Old Prediction One Plasmonic Particle at a Time</title><author>Tcherniak, A ; Ha, J. W ; Dominguez-Medina, S ; Slaughter, L. S ; Link, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-4c782757a622b1d39c6127978b1fa99fee8b08cb16ca014e432900d8a1d27a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Gold - chemistry</topic><topic>Materials science</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tcherniak, A</creatorcontrib><creatorcontrib>Ha, J. W</creatorcontrib><creatorcontrib>Dominguez-Medina, S</creatorcontrib><creatorcontrib>Slaughter, L. S</creatorcontrib><creatorcontrib>Link, S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tcherniak, A</au><au>Ha, J. W</au><au>Dominguez-Medina, S</au><au>Slaughter, L. S</au><au>Link, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing a Century Old Prediction One Plasmonic Particle at a Time</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-04-14</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>1398</spage><epage>1404</epage><pages>1398-1404</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>In 1908, Gustav Mie solved Maxwell’s equations to account for the absorption and scattering of spherical plasmonic particles. Since then much attention has been devoted to the size dependent optical properties of metallic nanoparticles. However, ensemble measurements of colloidal solutions generally only yield the total extinction cross sections of the nanoparticles. Here, we show how Mie’s prediction on the size dependence of the surface absorption and scattering can be probed separately for the same gold nanoparticle by using two single particle spectroscopy techniques, (1) dark-field scattering and (2) photothermal imaging, which selectively only measure scattering and absorption, respectively. Combining the optical measurements with correlated scanning electron microscopy furthermore allowed us to measure the size of the spherical gold nanoparticles, which ranged from 43 to 274 nm in diameter. We found that even though the trend predicted by Mie theory is followed well by the experimental data over a large range of nanoparticle diameters, for small size variations changes in scattering and absorption intensities are dominated by factors other than those considered by Mie theory. In particular, spectral shifts of the plasmon resonance due to deviations from a spherical particle shape alone cannot explain the observed variation in absorption and scattering intensities.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20196552</pmid><doi>10.1021/nl100199h</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-04, Vol.10 (4), p.1398-1404 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_733884063 |
source | MEDLINE; ACS Publications |
subjects | Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Gold - chemistry Materials science Metal Nanoparticles - chemistry Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanotechnology - methods Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Particle Size Physics Surface and interface electron states Surface Plasmon Resonance - methods Surface Properties |
title | Probing a Century Old Prediction One Plasmonic Particle at a Time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20a%20Century%20Old%20Prediction%20One%20Plasmonic%20Particle%20at%20a%20Time&rft.jtitle=Nano%20letters&rft.au=Tcherniak,%20A&rft.date=2010-04-14&rft.volume=10&rft.issue=4&rft.spage=1398&rft.epage=1404&rft.pages=1398-1404&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl100199h&rft_dat=%3Cproquest_cross%3E733884063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733884063&rft_id=info:pmid/20196552&rfr_iscdi=true |