White matter microstructure underlying default mode network connectivity in the human brain

Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2010-02, Vol.49 (3), p.2021-2032
Hauptverfasser: Teipel, Stefan J., Bokde, Arun L.W., Meindl, Thomas, Amaro, Edson, Soldner, Jasmin, Reiser, Maximilian F., Herpertz, Sabine C., Möller, Hans-Jürgen, Hampel, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2032
container_issue 3
container_start_page 2021
container_title NeuroImage (Orlando, Fla.)
container_volume 49
creator Teipel, Stefan J.
Bokde, Arun L.W.
Meindl, Thomas
Amaro, Edson
Soldner, Jasmin
Reiser, Maximilian F.
Herpertz, Sabine C.
Möller, Hans-Jürgen
Hampel, Harald
description Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p
doi_str_mv 10.1016/j.neuroimage.2009.10.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733879391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909011380</els_id><sourcerecordid>3244795881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMotlb_ggQEXc01HzOTZKmlWqHgpqULFyGTnOnNdSZT81G5_74Z7oVCF7pKSJ6Tc_I-CGFKNpTQ_vNuE6DExc_mDjaMEFWPN6QXL9ApJaprVCfYy3Xf8UZSqk7Qm5R2pIK0la_RCVVSSMH4Kfp1u_UZ8Gxyhohnb-OSciw2lwi4BAdx2vtwhx2MpkwZz4sDHCD_XeJvbJcQwGb_4PMe-4DzFvC2zCbgIRof3qJXo5kSvDuuZ-jm28X1-WVz9fP7j_MvV43tWpkbDkPLCRsHo5jsJTGkJyMjoFjvmGOD6wZpKe2IbFvbkcGazggzShjHljvJ-Rn6dHj3Pi5_CqSsZ58sTJMJsJSkBedSKK5oJT_-k2SU9VJQUcEPz8DdUmKov9B1kF4ypoiqlDxQa2opwqjvY3US95oSvYrSO_0kSq-i1psqqpa-PzYowwzuqfBopgJfDwDU5B48RJ2sh2DB-Vgz127x_-_yCPdcqqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506822909</pqid></control><display><type>article</type><title>White matter microstructure underlying default mode network connectivity in the human brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Teipel, Stefan J. ; Bokde, Arun L.W. ; Meindl, Thomas ; Amaro, Edson ; Soldner, Jasmin ; Reiser, Maximilian F. ; Herpertz, Sabine C. ; Möller, Hans-Jürgen ; Hampel, Harald</creator><creatorcontrib>Teipel, Stefan J. ; Bokde, Arun L.W. ; Meindl, Thomas ; Amaro, Edson ; Soldner, Jasmin ; Reiser, Maximilian F. ; Herpertz, Sabine C. ; Möller, Hans-Jürgen ; Hampel, Harald</creatorcontrib><description>Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p&lt;0.001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach. In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data. Our findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based on distinct pattern of anatomical connectivity within the cerebral white matter.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.10.067</identifier><identifier>PMID: 19878723</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acquisitions &amp; mergers ; Aged ; Aged, 80 and over ; Brain ; Brain - anatomy &amp; histology ; Brain function ; Brain Mapping ; Default mode ; Diffusion Tensor Imaging ; DTI ; Female ; Functional connectivity ; Humans ; Male ; Microstructure ; Middle Aged ; Multivariate analysis ; Neural Pathways - anatomy &amp; histology ; NMR ; Nuclear magnetic resonance ; Principal Component Analysis ; Resting state fMRI ; Structural connectivity ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-02, Vol.49 (3), p.2021-2032</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright (c) 2009 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</citedby><cites>FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811909011380$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19878723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teipel, Stefan J.</creatorcontrib><creatorcontrib>Bokde, Arun L.W.</creatorcontrib><creatorcontrib>Meindl, Thomas</creatorcontrib><creatorcontrib>Amaro, Edson</creatorcontrib><creatorcontrib>Soldner, Jasmin</creatorcontrib><creatorcontrib>Reiser, Maximilian F.</creatorcontrib><creatorcontrib>Herpertz, Sabine C.</creatorcontrib><creatorcontrib>Möller, Hans-Jürgen</creatorcontrib><creatorcontrib>Hampel, Harald</creatorcontrib><title>White matter microstructure underlying default mode network connectivity in the human brain</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p&lt;0.001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach. In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data. Our findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based on distinct pattern of anatomical connectivity within the cerebral white matter.</description><subject>Acquisitions &amp; mergers</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain function</subject><subject>Brain Mapping</subject><subject>Default mode</subject><subject>Diffusion Tensor Imaging</subject><subject>DTI</subject><subject>Female</subject><subject>Functional connectivity</subject><subject>Humans</subject><subject>Male</subject><subject>Microstructure</subject><subject>Middle Aged</subject><subject>Multivariate analysis</subject><subject>Neural Pathways - anatomy &amp; histology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Principal Component Analysis</subject><subject>Resting state fMRI</subject><subject>Structural connectivity</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1rFTEUhoMotlb_ggQEXc01HzOTZKmlWqHgpqULFyGTnOnNdSZT81G5_74Z7oVCF7pKSJ6Tc_I-CGFKNpTQ_vNuE6DExc_mDjaMEFWPN6QXL9ApJaprVCfYy3Xf8UZSqk7Qm5R2pIK0la_RCVVSSMH4Kfp1u_UZ8Gxyhohnb-OSciw2lwi4BAdx2vtwhx2MpkwZz4sDHCD_XeJvbJcQwGb_4PMe-4DzFvC2zCbgIRof3qJXo5kSvDuuZ-jm28X1-WVz9fP7j_MvV43tWpkbDkPLCRsHo5jsJTGkJyMjoFjvmGOD6wZpKe2IbFvbkcGazggzShjHljvJ-Rn6dHj3Pi5_CqSsZ58sTJMJsJSkBedSKK5oJT_-k2SU9VJQUcEPz8DdUmKov9B1kF4ypoiqlDxQa2opwqjvY3US95oSvYrSO_0kSq-i1psqqpa-PzYowwzuqfBopgJfDwDU5B48RJ2sh2DB-Vgz127x_-_yCPdcqqU</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Teipel, Stefan J.</creator><creator>Bokde, Arun L.W.</creator><creator>Meindl, Thomas</creator><creator>Amaro, Edson</creator><creator>Soldner, Jasmin</creator><creator>Reiser, Maximilian F.</creator><creator>Herpertz, Sabine C.</creator><creator>Möller, Hans-Jürgen</creator><creator>Hampel, Harald</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>White matter microstructure underlying default mode network connectivity in the human brain</title><author>Teipel, Stefan J. ; Bokde, Arun L.W. ; Meindl, Thomas ; Amaro, Edson ; Soldner, Jasmin ; Reiser, Maximilian F. ; Herpertz, Sabine C. ; Möller, Hans-Jürgen ; Hampel, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acquisitions &amp; mergers</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain function</topic><topic>Brain Mapping</topic><topic>Default mode</topic><topic>Diffusion Tensor Imaging</topic><topic>DTI</topic><topic>Female</topic><topic>Functional connectivity</topic><topic>Humans</topic><topic>Male</topic><topic>Microstructure</topic><topic>Middle Aged</topic><topic>Multivariate analysis</topic><topic>Neural Pathways - anatomy &amp; histology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Principal Component Analysis</topic><topic>Resting state fMRI</topic><topic>Structural connectivity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teipel, Stefan J.</creatorcontrib><creatorcontrib>Bokde, Arun L.W.</creatorcontrib><creatorcontrib>Meindl, Thomas</creatorcontrib><creatorcontrib>Amaro, Edson</creatorcontrib><creatorcontrib>Soldner, Jasmin</creatorcontrib><creatorcontrib>Reiser, Maximilian F.</creatorcontrib><creatorcontrib>Herpertz, Sabine C.</creatorcontrib><creatorcontrib>Möller, Hans-Jürgen</creatorcontrib><creatorcontrib>Hampel, Harald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teipel, Stefan J.</au><au>Bokde, Arun L.W.</au><au>Meindl, Thomas</au><au>Amaro, Edson</au><au>Soldner, Jasmin</au><au>Reiser, Maximilian F.</au><au>Herpertz, Sabine C.</au><au>Möller, Hans-Jürgen</au><au>Hampel, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>White matter microstructure underlying default mode network connectivity in the human brain</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>49</volume><issue>3</issue><spage>2021</spage><epage>2032</epage><pages>2021-2032</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p&lt;0.001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach. In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data. Our findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based on distinct pattern of anatomical connectivity within the cerebral white matter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19878723</pmid><doi>10.1016/j.neuroimage.2009.10.067</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2010-02, Vol.49 (3), p.2021-2032
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_733879391
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acquisitions & mergers
Aged
Aged, 80 and over
Brain
Brain - anatomy & histology
Brain function
Brain Mapping
Default mode
Diffusion Tensor Imaging
DTI
Female
Functional connectivity
Humans
Male
Microstructure
Middle Aged
Multivariate analysis
Neural Pathways - anatomy & histology
NMR
Nuclear magnetic resonance
Principal Component Analysis
Resting state fMRI
Structural connectivity
Studies
title White matter microstructure underlying default mode network connectivity in the human brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=White%20matter%20microstructure%20underlying%20default%20mode%20network%20connectivity%20in%20the%20human%20brain&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Teipel,%20Stefan%20J.&rft.date=2010-02-01&rft.volume=49&rft.issue=3&rft.spage=2021&rft.epage=2032&rft.pages=2021-2032&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.10.067&rft_dat=%3Cproquest_cross%3E3244795881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506822909&rft_id=info:pmid/19878723&rft_els_id=S1053811909011380&rfr_iscdi=true