White matter microstructure underlying default mode network connectivity in the human brain
Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotro...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2010-02, Vol.49 (3), p.2021-2032 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2032 |
---|---|
container_issue | 3 |
container_start_page | 2021 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 49 |
creator | Teipel, Stefan J. Bokde, Arun L.W. Meindl, Thomas Amaro, Edson Soldner, Jasmin Reiser, Maximilian F. Herpertz, Sabine C. Möller, Hans-Jürgen Hampel, Harald |
description | Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p |
doi_str_mv | 10.1016/j.neuroimage.2009.10.067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733879391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909011380</els_id><sourcerecordid>3244795881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMotlb_ggQEXc01HzOTZKmlWqHgpqULFyGTnOnNdSZT81G5_74Z7oVCF7pKSJ6Tc_I-CGFKNpTQ_vNuE6DExc_mDjaMEFWPN6QXL9ApJaprVCfYy3Xf8UZSqk7Qm5R2pIK0la_RCVVSSMH4Kfp1u_UZ8Gxyhohnb-OSciw2lwi4BAdx2vtwhx2MpkwZz4sDHCD_XeJvbJcQwGb_4PMe-4DzFvC2zCbgIRof3qJXo5kSvDuuZ-jm28X1-WVz9fP7j_MvV43tWpkbDkPLCRsHo5jsJTGkJyMjoFjvmGOD6wZpKe2IbFvbkcGazggzShjHljvJ-Rn6dHj3Pi5_CqSsZ58sTJMJsJSkBedSKK5oJT_-k2SU9VJQUcEPz8DdUmKov9B1kF4ypoiqlDxQa2opwqjvY3US95oSvYrSO_0kSq-i1psqqpa-PzYowwzuqfBopgJfDwDU5B48RJ2sh2DB-Vgz127x_-_yCPdcqqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506822909</pqid></control><display><type>article</type><title>White matter microstructure underlying default mode network connectivity in the human brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Teipel, Stefan J. ; Bokde, Arun L.W. ; Meindl, Thomas ; Amaro, Edson ; Soldner, Jasmin ; Reiser, Maximilian F. ; Herpertz, Sabine C. ; Möller, Hans-Jürgen ; Hampel, Harald</creator><creatorcontrib>Teipel, Stefan J. ; Bokde, Arun L.W. ; Meindl, Thomas ; Amaro, Edson ; Soldner, Jasmin ; Reiser, Maximilian F. ; Herpertz, Sabine C. ; Möller, Hans-Jürgen ; Hampel, Harald</creatorcontrib><description>Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p<0.001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach. In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data. Our findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based on distinct pattern of anatomical connectivity within the cerebral white matter.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.10.067</identifier><identifier>PMID: 19878723</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acquisitions & mergers ; Aged ; Aged, 80 and over ; Brain ; Brain - anatomy & histology ; Brain function ; Brain Mapping ; Default mode ; Diffusion Tensor Imaging ; DTI ; Female ; Functional connectivity ; Humans ; Male ; Microstructure ; Middle Aged ; Multivariate analysis ; Neural Pathways - anatomy & histology ; NMR ; Nuclear magnetic resonance ; Principal Component Analysis ; Resting state fMRI ; Structural connectivity ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-02, Vol.49 (3), p.2021-2032</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright (c) 2009 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</citedby><cites>FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811909011380$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19878723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teipel, Stefan J.</creatorcontrib><creatorcontrib>Bokde, Arun L.W.</creatorcontrib><creatorcontrib>Meindl, Thomas</creatorcontrib><creatorcontrib>Amaro, Edson</creatorcontrib><creatorcontrib>Soldner, Jasmin</creatorcontrib><creatorcontrib>Reiser, Maximilian F.</creatorcontrib><creatorcontrib>Herpertz, Sabine C.</creatorcontrib><creatorcontrib>Möller, Hans-Jürgen</creatorcontrib><creatorcontrib>Hampel, Harald</creatorcontrib><title>White matter microstructure underlying default mode network connectivity in the human brain</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p<0.001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach. In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data. Our findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based on distinct pattern of anatomical connectivity within the cerebral white matter.</description><subject>Acquisitions & mergers</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain function</subject><subject>Brain Mapping</subject><subject>Default mode</subject><subject>Diffusion Tensor Imaging</subject><subject>DTI</subject><subject>Female</subject><subject>Functional connectivity</subject><subject>Humans</subject><subject>Male</subject><subject>Microstructure</subject><subject>Middle Aged</subject><subject>Multivariate analysis</subject><subject>Neural Pathways - anatomy & histology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Principal Component Analysis</subject><subject>Resting state fMRI</subject><subject>Structural connectivity</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1rFTEUhoMotlb_ggQEXc01HzOTZKmlWqHgpqULFyGTnOnNdSZT81G5_74Z7oVCF7pKSJ6Tc_I-CGFKNpTQ_vNuE6DExc_mDjaMEFWPN6QXL9ApJaprVCfYy3Xf8UZSqk7Qm5R2pIK0la_RCVVSSMH4Kfp1u_UZ8Gxyhohnb-OSciw2lwi4BAdx2vtwhx2MpkwZz4sDHCD_XeJvbJcQwGb_4PMe-4DzFvC2zCbgIRof3qJXo5kSvDuuZ-jm28X1-WVz9fP7j_MvV43tWpkbDkPLCRsHo5jsJTGkJyMjoFjvmGOD6wZpKe2IbFvbkcGazggzShjHljvJ-Rn6dHj3Pi5_CqSsZ58sTJMJsJSkBedSKK5oJT_-k2SU9VJQUcEPz8DdUmKov9B1kF4ypoiqlDxQa2opwqjvY3US95oSvYrSO_0kSq-i1psqqpa-PzYowwzuqfBopgJfDwDU5B48RJ2sh2DB-Vgz127x_-_yCPdcqqU</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Teipel, Stefan J.</creator><creator>Bokde, Arun L.W.</creator><creator>Meindl, Thomas</creator><creator>Amaro, Edson</creator><creator>Soldner, Jasmin</creator><creator>Reiser, Maximilian F.</creator><creator>Herpertz, Sabine C.</creator><creator>Möller, Hans-Jürgen</creator><creator>Hampel, Harald</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>White matter microstructure underlying default mode network connectivity in the human brain</title><author>Teipel, Stefan J. ; Bokde, Arun L.W. ; Meindl, Thomas ; Amaro, Edson ; Soldner, Jasmin ; Reiser, Maximilian F. ; Herpertz, Sabine C. ; Möller, Hans-Jürgen ; Hampel, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-3eb4302fba928680a060f20e926d2d2bd5b8c1150844c50bca5a7af8eff43d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acquisitions & mergers</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain function</topic><topic>Brain Mapping</topic><topic>Default mode</topic><topic>Diffusion Tensor Imaging</topic><topic>DTI</topic><topic>Female</topic><topic>Functional connectivity</topic><topic>Humans</topic><topic>Male</topic><topic>Microstructure</topic><topic>Middle Aged</topic><topic>Multivariate analysis</topic><topic>Neural Pathways - anatomy & histology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Principal Component Analysis</topic><topic>Resting state fMRI</topic><topic>Structural connectivity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teipel, Stefan J.</creatorcontrib><creatorcontrib>Bokde, Arun L.W.</creatorcontrib><creatorcontrib>Meindl, Thomas</creatorcontrib><creatorcontrib>Amaro, Edson</creatorcontrib><creatorcontrib>Soldner, Jasmin</creatorcontrib><creatorcontrib>Reiser, Maximilian F.</creatorcontrib><creatorcontrib>Herpertz, Sabine C.</creatorcontrib><creatorcontrib>Möller, Hans-Jürgen</creatorcontrib><creatorcontrib>Hampel, Harald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teipel, Stefan J.</au><au>Bokde, Arun L.W.</au><au>Meindl, Thomas</au><au>Amaro, Edson</au><au>Soldner, Jasmin</au><au>Reiser, Maximilian F.</au><au>Herpertz, Sabine C.</au><au>Möller, Hans-Jürgen</au><au>Hampel, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>White matter microstructure underlying default mode network connectivity in the human brain</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>49</volume><issue>3</issue><spage>2021</spage><epage>2032</epage><pages>2021-2032</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain. The underlying structural basis of this functional connectivity pattern is still widely unexplored. We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure underlying default mode connectivity. We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus with lateral temporal lobes, medial temporal lobes, and precuneus. This was demonstrated at the p<0.001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach. In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data. Our findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based on distinct pattern of anatomical connectivity within the cerebral white matter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19878723</pmid><doi>10.1016/j.neuroimage.2009.10.067</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2010-02, Vol.49 (3), p.2021-2032 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_733879391 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acquisitions & mergers Aged Aged, 80 and over Brain Brain - anatomy & histology Brain function Brain Mapping Default mode Diffusion Tensor Imaging DTI Female Functional connectivity Humans Male Microstructure Middle Aged Multivariate analysis Neural Pathways - anatomy & histology NMR Nuclear magnetic resonance Principal Component Analysis Resting state fMRI Structural connectivity Studies |
title | White matter microstructure underlying default mode network connectivity in the human brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=White%20matter%20microstructure%20underlying%20default%20mode%20network%20connectivity%20in%20the%20human%20brain&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Teipel,%20Stefan%20J.&rft.date=2010-02-01&rft.volume=49&rft.issue=3&rft.spage=2021&rft.epage=2032&rft.pages=2021-2032&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.10.067&rft_dat=%3Cproquest_cross%3E3244795881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506822909&rft_id=info:pmid/19878723&rft_els_id=S1053811909011380&rfr_iscdi=true |