Non-linear regression methods in NIRS quantitative analysis

Due to its speed and precision, near-infrared reflectance spectroscopy (NIRS) has become a widely used analytical technique in many industries. It offers, moreover, a number of other advantages which make it ideal for meeting current demands in terms of control and traceability: low cost per sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2007-04, Vol.72 (1), p.28-42
Hauptverfasser: Pérez-Marín, D., Garrido-Varo, A., Guerrero, J.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 28
container_title Talanta (Oxford)
container_volume 72
creator Pérez-Marín, D.
Garrido-Varo, A.
Guerrero, J.E.
description Due to its speed and precision, near-infrared reflectance spectroscopy (NIRS) has become a widely used analytical technique in many industries. It offers, moreover, a number of other advantages which make it ideal for meeting current demands in terms of control and traceability: low cost per sample analysed; little or no need for sample preparation; ability to analyse a wide range of products and parameters; a high degree of reproducibility and repeatability. NIRS can be built into in-line processes, and – since no reagents are required – produces no waste. However, the major drawback to the use of NIRS for its most traditional application (the generation of prediction equations) is that it is a secondary method, and as such needs to be calibrated using a conventional reference method. For quantitative applications, calibration involves ascertaining the optimum mathematical relationship between spectral data and data provided by the reference method. The model may be fairly complex, since the NIRS spectrum is highly variable and contains physical/chemical information for the sample which may be redundant. As a result, multivariate calibration is required, based on a set of absorption values from several wavelengths. Since the relationship to be modelled is often non-linear, classical regression methods are unsuitable, and more complex strategies and algorithms must be sought in order to model this non-linearity. This overview addresses the most widely used non-linear algorithms in the management of NIRS data.
doi_str_mv 10.1016/j.talanta.2006.10.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733876978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914006007119</els_id><sourcerecordid>733876978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-d9cd77dc36ce5f8716d1e1d8cfd87ceb040191def5e6b4866c8599e688e14fc33</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotlYfQZmNuJp60szkggsR8VIoFbysQ5qc0ZTpjCZToW9vSge6dHXg8P3n8hFyTmFMgfLr5bgztWk6M54A8NQbA-MHZEilYDkrBTskQwCmckULGJCTGJcAMGHAjsmAKhC0FHJIbuZtk9e-QROygJ8BY_Rtk62w-2pdzHyTzaevb9nPOq3ynen8L2amMfUm-nhKjipTRzzr64h8PD683z_ns5en6f3dLLdMFV3ulHVCOMu4xbKSgnJHkTppKyeFxQUUQBV1WJXIF4Xk3MpSKeRSIi0qy9iIXO3mfof2Z42x0ysfLdbpfWzXUQvGpOBKyESWO9KGNsaAlf4OfmXCRlPQW216qXtteqtt207aUu6i37BerNDtU72nBFz2gInW1FUwjfVxz0leFgqKxN3uOEw-fj0GHa3HxqLzAW2nXev_OeUP8fWOCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733876978</pqid></control><display><type>article</type><title>Non-linear regression methods in NIRS quantitative analysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pérez-Marín, D. ; Garrido-Varo, A. ; Guerrero, J.E.</creator><creatorcontrib>Pérez-Marín, D. ; Garrido-Varo, A. ; Guerrero, J.E.</creatorcontrib><description>Due to its speed and precision, near-infrared reflectance spectroscopy (NIRS) has become a widely used analytical technique in many industries. It offers, moreover, a number of other advantages which make it ideal for meeting current demands in terms of control and traceability: low cost per sample analysed; little or no need for sample preparation; ability to analyse a wide range of products and parameters; a high degree of reproducibility and repeatability. NIRS can be built into in-line processes, and – since no reagents are required – produces no waste. However, the major drawback to the use of NIRS for its most traditional application (the generation of prediction equations) is that it is a secondary method, and as such needs to be calibrated using a conventional reference method. For quantitative applications, calibration involves ascertaining the optimum mathematical relationship between spectral data and data provided by the reference method. The model may be fairly complex, since the NIRS spectrum is highly variable and contains physical/chemical information for the sample which may be redundant. As a result, multivariate calibration is required, based on a set of absorption values from several wavelengths. Since the relationship to be modelled is often non-linear, classical regression methods are unsuitable, and more complex strategies and algorithms must be sought in order to model this non-linearity. This overview addresses the most widely used non-linear algorithms in the management of NIRS data.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2006.10.036</identifier><identifier>PMID: 19071578</identifier><identifier>CODEN: TLNTA2</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysis methods ; Analytical chemistry ; ANN ; Applied sciences ; Calibration ; Chemistry ; Exact sciences and technology ; Local regressions ; NIRS ; Non-linear ; Pollution ; Wastes</subject><ispartof>Talanta (Oxford), 2007-04, Vol.72 (1), p.28-42</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-d9cd77dc36ce5f8716d1e1d8cfd87ceb040191def5e6b4866c8599e688e14fc33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.talanta.2006.10.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18654904$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19071578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Marín, D.</creatorcontrib><creatorcontrib>Garrido-Varo, A.</creatorcontrib><creatorcontrib>Guerrero, J.E.</creatorcontrib><title>Non-linear regression methods in NIRS quantitative analysis</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Due to its speed and precision, near-infrared reflectance spectroscopy (NIRS) has become a widely used analytical technique in many industries. It offers, moreover, a number of other advantages which make it ideal for meeting current demands in terms of control and traceability: low cost per sample analysed; little or no need for sample preparation; ability to analyse a wide range of products and parameters; a high degree of reproducibility and repeatability. NIRS can be built into in-line processes, and – since no reagents are required – produces no waste. However, the major drawback to the use of NIRS for its most traditional application (the generation of prediction equations) is that it is a secondary method, and as such needs to be calibrated using a conventional reference method. For quantitative applications, calibration involves ascertaining the optimum mathematical relationship between spectral data and data provided by the reference method. The model may be fairly complex, since the NIRS spectrum is highly variable and contains physical/chemical information for the sample which may be redundant. As a result, multivariate calibration is required, based on a set of absorption values from several wavelengths. Since the relationship to be modelled is often non-linear, classical regression methods are unsuitable, and more complex strategies and algorithms must be sought in order to model this non-linearity. This overview addresses the most widely used non-linear algorithms in the management of NIRS data.</description><subject>Analysis methods</subject><subject>Analytical chemistry</subject><subject>ANN</subject><subject>Applied sciences</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Local regressions</subject><subject>NIRS</subject><subject>Non-linear</subject><subject>Pollution</subject><subject>Wastes</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMotlYfQZmNuJp60szkggsR8VIoFbysQ5qc0ZTpjCZToW9vSge6dHXg8P3n8hFyTmFMgfLr5bgztWk6M54A8NQbA-MHZEilYDkrBTskQwCmckULGJCTGJcAMGHAjsmAKhC0FHJIbuZtk9e-QROygJ8BY_Rtk62w-2pdzHyTzaevb9nPOq3ynen8L2amMfUm-nhKjipTRzzr64h8PD683z_ns5en6f3dLLdMFV3ulHVCOMu4xbKSgnJHkTppKyeFxQUUQBV1WJXIF4Xk3MpSKeRSIi0qy9iIXO3mfof2Z42x0ysfLdbpfWzXUQvGpOBKyESWO9KGNsaAlf4OfmXCRlPQW216qXtteqtt207aUu6i37BerNDtU72nBFz2gInW1FUwjfVxz0leFgqKxN3uOEw-fj0GHa3HxqLzAW2nXev_OeUP8fWOCw</recordid><startdate>20070415</startdate><enddate>20070415</enddate><creator>Pérez-Marín, D.</creator><creator>Garrido-Varo, A.</creator><creator>Guerrero, J.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070415</creationdate><title>Non-linear regression methods in NIRS quantitative analysis</title><author>Pérez-Marín, D. ; Garrido-Varo, A. ; Guerrero, J.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-d9cd77dc36ce5f8716d1e1d8cfd87ceb040191def5e6b4866c8599e688e14fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analysis methods</topic><topic>Analytical chemistry</topic><topic>ANN</topic><topic>Applied sciences</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Local regressions</topic><topic>NIRS</topic><topic>Non-linear</topic><topic>Pollution</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Marín, D.</creatorcontrib><creatorcontrib>Garrido-Varo, A.</creatorcontrib><creatorcontrib>Guerrero, J.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Marín, D.</au><au>Garrido-Varo, A.</au><au>Guerrero, J.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear regression methods in NIRS quantitative analysis</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2007-04-15</date><risdate>2007</risdate><volume>72</volume><issue>1</issue><spage>28</spage><epage>42</epage><pages>28-42</pages><issn>0039-9140</issn><eissn>1873-3573</eissn><coden>TLNTA2</coden><abstract>Due to its speed and precision, near-infrared reflectance spectroscopy (NIRS) has become a widely used analytical technique in many industries. It offers, moreover, a number of other advantages which make it ideal for meeting current demands in terms of control and traceability: low cost per sample analysed; little or no need for sample preparation; ability to analyse a wide range of products and parameters; a high degree of reproducibility and repeatability. NIRS can be built into in-line processes, and – since no reagents are required – produces no waste. However, the major drawback to the use of NIRS for its most traditional application (the generation of prediction equations) is that it is a secondary method, and as such needs to be calibrated using a conventional reference method. For quantitative applications, calibration involves ascertaining the optimum mathematical relationship between spectral data and data provided by the reference method. The model may be fairly complex, since the NIRS spectrum is highly variable and contains physical/chemical information for the sample which may be redundant. As a result, multivariate calibration is required, based on a set of absorption values from several wavelengths. Since the relationship to be modelled is often non-linear, classical regression methods are unsuitable, and more complex strategies and algorithms must be sought in order to model this non-linearity. This overview addresses the most widely used non-linear algorithms in the management of NIRS data.</abstract><cop>Amsterdam</cop><cop>Oxford</cop><pub>Elsevier B.V</pub><pmid>19071578</pmid><doi>10.1016/j.talanta.2006.10.036</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2007-04, Vol.72 (1), p.28-42
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_733876978
source ScienceDirect Journals (5 years ago - present)
subjects Analysis methods
Analytical chemistry
ANN
Applied sciences
Calibration
Chemistry
Exact sciences and technology
Local regressions
NIRS
Non-linear
Pollution
Wastes
title Non-linear regression methods in NIRS quantitative analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20regression%20methods%20in%20NIRS%20quantitative%20analysis&rft.jtitle=Talanta%20(Oxford)&rft.au=P%C3%A9rez-Mar%C3%ADn,%20D.&rft.date=2007-04-15&rft.volume=72&rft.issue=1&rft.spage=28&rft.epage=42&rft.pages=28-42&rft.issn=0039-9140&rft.eissn=1873-3573&rft.coden=TLNTA2&rft_id=info:doi/10.1016/j.talanta.2006.10.036&rft_dat=%3Cproquest_cross%3E733876978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733876978&rft_id=info:pmid/19071578&rft_els_id=S0039914006007119&rfr_iscdi=true