A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography

A nonlinear method based on a Fuzzy Inference System (FIS) to improve the images obtained from Electrical Capacitance Tomography (ECT) is proposed. Estimation of the molten metal characteristic in the Lost Foam Casting (LFC) process is a novel application in the area of the tomography process. The c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2010, Vol.49 (1), p.10-18
Hauptverfasser: Deabes, W.A., Abdelrahman, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 10
container_title ISA transactions
container_volume 49
creator Deabes, W.A.
Abdelrahman, M.A.
description A nonlinear method based on a Fuzzy Inference System (FIS) to improve the images obtained from Electrical Capacitance Tomography (ECT) is proposed. Estimation of the molten metal characteristic in the Lost Foam Casting (LFC) process is a novel application in the area of the tomography process. The convergence rate of iterative image reconstruction techniques is dependent on the accuracy of the first image. The possibility of the existence of metal in the first image is computed by the proposed fuzzy system. This first image is passed to an iterative image reconstruction technique to get more precise images and to speed up the convergence rate. The proposed technique is able to detect the position of the metal on the periphery of the imaging area by using just eight capacitive sensors. The final results demonstrate the advantage of using the FIS compared to the performance of the iterative back projection image reconstruction technique.
doi_str_mv 10.1016/j.isatra.2009.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733863177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057809000822</els_id><sourcerecordid>733863177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-eb0c1b45f349826292400316b24777108cf303f3d45a856f7a4891a5199aa5f93</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpaJyk_6AUXUpP64yk3ZV0KYSQNoVAL81ZjLWSI7O7ciVtwfn1lbFpbz0NDM98vA8hHxisGbD-drcOGUvCNQfQtbUG6N6QFVNSNxw4f0tWAEw30El1Sa5y3gEA77R6Ry6Z1gC95Cti7ugc5zHMDhP1y-vrgWLOIRc30DDh1tHkbJxzSYstIc4Ux21MobxM1MdE3ehsScHiSC3u0YaCs3W0xCluE-5fDjfkwuOY3ftzvSbPXx9-3j82Tz--fb-_e2qs0Kw0bgOWbdrOi1Yr3nPNWwDB-g1vpZQMlPUChBdD26Hqei-xVZphV4Mgdl6La_L5tHef4q_F5WKmkK0bR5xdXLKRQqheMCkr2Z5Im2LOyXmzTzVpOhgG5mjW7MzJrDmaPXar2Tr28Xxg2Uxu-Dd0VlmBT2cAc_XhUzUR8l-O1yRcSlW5LyfOVR2_g0sm2-CqtSFU1cUMMfz_kz-j6Jlm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733863177</pqid></control><display><type>article</type><title>A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Deabes, W.A. ; Abdelrahman, M.A.</creator><creatorcontrib>Deabes, W.A. ; Abdelrahman, M.A.</creatorcontrib><description>A nonlinear method based on a Fuzzy Inference System (FIS) to improve the images obtained from Electrical Capacitance Tomography (ECT) is proposed. Estimation of the molten metal characteristic in the Lost Foam Casting (LFC) process is a novel application in the area of the tomography process. The convergence rate of iterative image reconstruction techniques is dependent on the accuracy of the first image. The possibility of the existence of metal in the first image is computed by the proposed fuzzy system. This first image is passed to an iterative image reconstruction technique to get more precise images and to speed up the convergence rate. The proposed technique is able to detect the position of the metal on the periphery of the imaging area by using just eight capacitive sensors. The final results demonstrate the advantage of using the FIS compared to the performance of the iterative back projection image reconstruction technique.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2009.10.005</identifier><identifier>PMID: 19900672</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Capacitance measurements ; Computer science; control theory; systems ; ECT ; Electric Capacitance ; Exact sciences and technology ; Finite Element Analysis ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Fuzzy Logic ; Fuzzy systems ; Image Processing, Computer-Assisted - methods ; Instrumentation for fluid dynamics ; Nonlinear Dynamics ; Pattern recognition. Digital image processing. Computational geometry ; Physics ; Tomography - methods</subject><ispartof>ISA transactions, 2010, Vol.49 (1), p.10-18</ispartof><rights>2009 ISA</rights><rights>2015 INIST-CNRS</rights><rights>2009 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-eb0c1b45f349826292400316b24777108cf303f3d45a856f7a4891a5199aa5f93</citedby><cites>FETCH-LOGICAL-c391t-eb0c1b45f349826292400316b24777108cf303f3d45a856f7a4891a5199aa5f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057809000822$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22472778$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19900672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deabes, W.A.</creatorcontrib><creatorcontrib>Abdelrahman, M.A.</creatorcontrib><title>A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>A nonlinear method based on a Fuzzy Inference System (FIS) to improve the images obtained from Electrical Capacitance Tomography (ECT) is proposed. Estimation of the molten metal characteristic in the Lost Foam Casting (LFC) process is a novel application in the area of the tomography process. The convergence rate of iterative image reconstruction techniques is dependent on the accuracy of the first image. The possibility of the existence of metal in the first image is computed by the proposed fuzzy system. This first image is passed to an iterative image reconstruction technique to get more precise images and to speed up the convergence rate. The proposed technique is able to detect the position of the metal on the periphery of the imaging area by using just eight capacitive sensors. The final results demonstrate the advantage of using the FIS compared to the performance of the iterative back projection image reconstruction technique.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Capacitance measurements</subject><subject>Computer science; control theory; systems</subject><subject>ECT</subject><subject>Electric Capacitance</subject><subject>Exact sciences and technology</subject><subject>Finite Element Analysis</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Fuzzy Logic</subject><subject>Fuzzy systems</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Instrumentation for fluid dynamics</subject><subject>Nonlinear Dynamics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Physics</subject><subject>Tomography - methods</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rGzEQhkVpaJyk_6AUXUpP64yk3ZV0KYSQNoVAL81ZjLWSI7O7ciVtwfn1lbFpbz0NDM98vA8hHxisGbD-drcOGUvCNQfQtbUG6N6QFVNSNxw4f0tWAEw30El1Sa5y3gEA77R6Ry6Z1gC95Cti7ugc5zHMDhP1y-vrgWLOIRc30DDh1tHkbJxzSYstIc4Ux21MobxM1MdE3ehsScHiSC3u0YaCs3W0xCluE-5fDjfkwuOY3ftzvSbPXx9-3j82Tz--fb-_e2qs0Kw0bgOWbdrOi1Yr3nPNWwDB-g1vpZQMlPUChBdD26Hqei-xVZphV4Mgdl6La_L5tHef4q_F5WKmkK0bR5xdXLKRQqheMCkr2Z5Im2LOyXmzTzVpOhgG5mjW7MzJrDmaPXar2Tr28Xxg2Uxu-Dd0VlmBT2cAc_XhUzUR8l-O1yRcSlW5LyfOVR2_g0sm2-CqtSFU1cUMMfz_kz-j6Jlm</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Deabes, W.A.</creator><creator>Abdelrahman, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography</title><author>Deabes, W.A. ; Abdelrahman, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-eb0c1b45f349826292400316b24777108cf303f3d45a856f7a4891a5199aa5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Capacitance measurements</topic><topic>Computer science; control theory; systems</topic><topic>ECT</topic><topic>Electric Capacitance</topic><topic>Exact sciences and technology</topic><topic>Finite Element Analysis</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Fuzzy Logic</topic><topic>Fuzzy systems</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Instrumentation for fluid dynamics</topic><topic>Nonlinear Dynamics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Physics</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deabes, W.A.</creatorcontrib><creatorcontrib>Abdelrahman, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deabes, W.A.</au><au>Abdelrahman, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2010</date><risdate>2010</risdate><volume>49</volume><issue>1</issue><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>A nonlinear method based on a Fuzzy Inference System (FIS) to improve the images obtained from Electrical Capacitance Tomography (ECT) is proposed. Estimation of the molten metal characteristic in the Lost Foam Casting (LFC) process is a novel application in the area of the tomography process. The convergence rate of iterative image reconstruction techniques is dependent on the accuracy of the first image. The possibility of the existence of metal in the first image is computed by the proposed fuzzy system. This first image is passed to an iterative image reconstruction technique to get more precise images and to speed up the convergence rate. The proposed technique is able to detect the position of the metal on the periphery of the imaging area by using just eight capacitive sensors. The final results demonstrate the advantage of using the FIS compared to the performance of the iterative back projection image reconstruction technique.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19900672</pmid><doi>10.1016/j.isatra.2009.10.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2010, Vol.49 (1), p.10-18
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_733863177
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Artificial intelligence
Capacitance measurements
Computer science
control theory
systems
ECT
Electric Capacitance
Exact sciences and technology
Finite Element Analysis
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Fuzzy Logic
Fuzzy systems
Image Processing, Computer-Assisted - methods
Instrumentation for fluid dynamics
Nonlinear Dynamics
Pattern recognition. Digital image processing. Computational geometry
Physics
Tomography - methods
title A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20fuzzy%20assisted%20image%20reconstruction%20algorithm%20for%20electrical%20capacitance%20tomography&rft.jtitle=ISA%20transactions&rft.au=Deabes,%20W.A.&rft.date=2010&rft.volume=49&rft.issue=1&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2009.10.005&rft_dat=%3Cproquest_cross%3E733863177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733863177&rft_id=info:pmid/19900672&rft_els_id=S0019057809000822&rfr_iscdi=true