MK-2461, a Novel Multitargeted Kinase Inhibitor, Preferentially Inhibits the Activated c-Met Receptor
The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met k...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2010-02, Vol.70 (4), p.1524-1533 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met kinases (N1100Y, Y1230C, Y1230H, Y1235D, and M1250T) with IC(50) values of 0.4 to 2.5 nmol/L. In contrast, MK-2461 was several hundredfold less potent as an inhibitor of c-Met autophosphorylation at the kinase activation loop. In tumor cells, MK-2461 effectively suppressed constitutive or ligand-induced phosphorylation of the juxtamembrane domain and COOH-terminal docking site of c-Met, and its downstream signaling to the phosphoinositide 3-kinase-AKT and Ras-extracellular signal-regulated kinase pathways, without inhibiting autophosphorylation of the c-Met activation loop. BIAcore studies indicated 6-fold tighter binding to c-Met when it was phosphorylated, suggesting that MK-2461 binds preferentially to activated c-Met. MK-2461 displayed significant inhibitory activities against fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor, and other receptor tyrosine kinases. In cell culture, MK-2461 inhibited hepatocyte growth factor/c-Met-dependent mitogenesis, migration, cell scatter, and tubulogenesis. Seven of 10 MK-2461-sensitive tumor cell lines identified from a large panel harbored genomic amplification of MET or FGFR2. In a murine xenograft model of c-Met-dependent gastric cancer, a well-tolerated oral regimen of MK-2461 administered at 100 mg/kg twice daily effectively suppressed c-Met signaling and tumor growth. Similarly, MK-2461 inhibited the growth of tumors formed by s.c. injection of mouse NIH-3T3 cells expressing oncogenic c-Met mutants. Taken together, our findings support further preclinical development of MK-2461 for cancer therapy. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-09-2541 |