Genetic Exchange Within and Between Assemblages of Giardia duodenalis

Meiotic sex evolved early in the history of eukaryotes. Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis), a parasitic protist belonging to an early diverging lineage of eukaryotes, shows no cytological or physiological evidence of meiotic or sexual processes. Recent molecular analyses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of eukaryotic microbiology 2009-11, Vol.56 (6), p.504-518
Hauptverfasser: LASEK-NESSELQUIST, ERICA, WELCH, DAVID MARK, THOMPSON, RICHARD CHRISTOPHER ANDREW, STEUART, ROBERT F, SOGIN, MITCHELL L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meiotic sex evolved early in the history of eukaryotes. Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis), a parasitic protist belonging to an early diverging lineage of eukaryotes, shows no cytological or physiological evidence of meiotic or sexual processes. Recent molecular analyses challenge the idea that G. duodenalis is a strictly clonal organism by providing evidence of recombination between homologous chromosomes within one subgroup (Assemblage A) of this species as well as genetic transfer from one subgroup to another (Assemblage A-B). Because recombination is not well documented and because it is not known whether the observed inter-assemblage transfer represents true reciprocal genetic exchange or a non-sexual process, we analyzed genic sequences from all major subgroups (Assemblages A-G) of this species. For all assemblages, we detected molecular signatures consistent with meiotic sex or genetic exchange, including low levels of heterozygosity, as indicated by allelic sequence divergence within isolates, and intra- and inter-assemblage recombination. The identification of recombination between assemblages suggests a shared gene pool and calls into question whether it is appropriate to divide the genetically distinct assemblages of G. duodenalis into a species complex.
ISSN:1066-5234
1550-7408
DOI:10.1111/j.1550-7408.2009.00443.x