Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results

We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (subdiffusion or superdiffusion) at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-03, Vol.81 (3 Pt 1), p.030105-030105, Article 030105
Hauptverfasser: Ilyin, Valery, Procaccia, Itamar, Zagorodny, Anatoly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 030105
container_issue 3 Pt 1
container_start_page 030105
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 81
creator Ilyin, Valery
Procaccia, Itamar
Zagorodny, Anatoly
description We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (subdiffusion or superdiffusion) at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function (pdf) as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the pdf obtained within the continuous random-walk approach, but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.
doi_str_mv 10.1103/PhysRevE.81.030105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733856659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733856659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-2d7c89018e127f0c7b59c011e69df0c6646d2a4c7ca41e0960f821e152bc51f83</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EoqXwBzgg3zileIkdhxuqyiJVArGcLdexqVFSl4wD9N-TLnCaN6P3RnofQueUjCkl_OppsYZn9zUdKzomnFAiDtCQCkEyxgt5uNG8zHghxACdAHwQwhlX-TEaMMKlkEoMkX5J0S4MpGDxqo3WATjAto0AYfmOfRsbPDd1HbaOFPuLsSnEpalxFbzvoNf4O6QFblwT2_U1dj-9A7cOujrBKTrypgZ3tp8j9HY7fZ3cZ7PHu4fJzSyzPJcpY1VhVUmocpQVnthiLkpLKHWyrPpVylxWzOS2sCanjpSSeMWoo4LNraBe8RG63P3tS3x2DpJuAlhX12bpYge64FwJKUXZO9nOuS3ZOq9XbWhMu9aU6A1X_cdVK6p3XPvQxf59N29c9R_5A8l_AXSDdwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733856659</pqid></control><display><type>article</type><title>Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Ilyin, Valery ; Procaccia, Itamar ; Zagorodny, Anatoly</creator><creatorcontrib>Ilyin, Valery ; Procaccia, Itamar ; Zagorodny, Anatoly</creatorcontrib><description>We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (subdiffusion or superdiffusion) at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function (pdf) as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the pdf obtained within the continuous random-walk approach, but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.81.030105</identifier><identifier>PMID: 20365685</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Diffusion ; Models, Chemical ; Models, Statistical ; Stochastic Processes</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-03, Vol.81 (3 Pt 1), p.030105-030105, Article 030105</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-2d7c89018e127f0c7b59c011e69df0c6646d2a4c7ca41e0960f821e152bc51f83</citedby><cites>FETCH-LOGICAL-c346t-2d7c89018e127f0c7b59c011e69df0c6646d2a4c7ca41e0960f821e152bc51f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20365685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ilyin, Valery</creatorcontrib><creatorcontrib>Procaccia, Itamar</creatorcontrib><creatorcontrib>Zagorodny, Anatoly</creatorcontrib><title>Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (subdiffusion or superdiffusion) at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function (pdf) as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the pdf obtained within the continuous random-walk approach, but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.</description><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Models, Chemical</subject><subject>Models, Statistical</subject><subject>Stochastic Processes</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kElPwzAQhS0EoqXwBzgg3zileIkdhxuqyiJVArGcLdexqVFSl4wD9N-TLnCaN6P3RnofQueUjCkl_OppsYZn9zUdKzomnFAiDtCQCkEyxgt5uNG8zHghxACdAHwQwhlX-TEaMMKlkEoMkX5J0S4MpGDxqo3WATjAto0AYfmOfRsbPDd1HbaOFPuLsSnEpalxFbzvoNf4O6QFblwT2_U1dj-9A7cOujrBKTrypgZ3tp8j9HY7fZ3cZ7PHu4fJzSyzPJcpY1VhVUmocpQVnthiLkpLKHWyrPpVylxWzOS2sCanjpSSeMWoo4LNraBe8RG63P3tS3x2DpJuAlhX12bpYge64FwJKUXZO9nOuS3ZOq9XbWhMu9aU6A1X_cdVK6p3XPvQxf59N29c9R_5A8l_AXSDdwc</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Ilyin, Valery</creator><creator>Procaccia, Itamar</creator><creator>Zagorodny, Anatoly</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results</title><author>Ilyin, Valery ; Procaccia, Itamar ; Zagorodny, Anatoly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-2d7c89018e127f0c7b59c011e69df0c6646d2a4c7ca41e0960f821e152bc51f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Models, Chemical</topic><topic>Models, Statistical</topic><topic>Stochastic Processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Ilyin, Valery</creatorcontrib><creatorcontrib>Procaccia, Itamar</creatorcontrib><creatorcontrib>Zagorodny, Anatoly</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilyin, Valery</au><au>Procaccia, Itamar</au><au>Zagorodny, Anatoly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>81</volume><issue>3 Pt 1</issue><spage>030105</spage><epage>030105</epage><pages>030105-030105</pages><artnum>030105</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (subdiffusion or superdiffusion) at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function (pdf) as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the pdf obtained within the continuous random-walk approach, but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.</abstract><cop>United States</cop><pmid>20365685</pmid><doi>10.1103/PhysRevE.81.030105</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-03, Vol.81 (3 Pt 1), p.030105-030105, Article 030105
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_733856659
source MEDLINE; American Physical Society Journals
subjects Computer Simulation
Diffusion
Models, Chemical
Models, Statistical
Stochastic Processes
title Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20processes%20crossing%20from%20ballistic%20to%20fractional%20diffusion%20with%20memory:%20exact%20results&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Ilyin,%20Valery&rft.date=2010-03-01&rft.volume=81&rft.issue=3%20Pt%201&rft.spage=030105&rft.epage=030105&rft.pages=030105-030105&rft.artnum=030105&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.81.030105&rft_dat=%3Cproquest_cross%3E733856659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733856659&rft_id=info:pmid/20365685&rfr_iscdi=true