Ab initio method for locating characteristic potential-energy minima of liquids

It is possible in principle to probe the many-atom potential surface using density functional theory (DFT). This will allow us to apply DFT to the Hamiltonian formulation of atomic motion in monatomic liquids by Wallace [Phys. Rev. E 56, 4179 (1997)]. For a monatomic system, analysis of the potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-11, Vol.80 (5 Pt 1), p.051111-051111, Article 051111
Hauptverfasser: Holmström, E, Bock, N, Peery, Travis B, Lizárraga, R, De Lorenzi-Venneri, G, Chisolm, Eric D, Wallace, Duane C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 051111
container_issue 5 Pt 1
container_start_page 051111
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 80
creator Holmström, E
Bock, N
Peery, Travis B
Lizárraga, R
De Lorenzi-Venneri, G
Chisolm, Eric D
Wallace, Duane C
description It is possible in principle to probe the many-atom potential surface using density functional theory (DFT). This will allow us to apply DFT to the Hamiltonian formulation of atomic motion in monatomic liquids by Wallace [Phys. Rev. E 56, 4179 (1997)]. For a monatomic system, analysis of the potential surface is facilitated by the random and symmetric classification of potential-energy valleys. Since the random valleys are numerically dominant and uniform in their macroscopic potential properties, only a few quenches are necessary to establish these properties. Here we describe an efficient technique for doing this. Quenches are done from easily generated "stochastic" configurations, in which the nuclei are distributed uniformly within a constraint limiting the closeness of approach. For metallic Na with atomic pair potential interactions, it is shown that quenches from stochastic configurations and quenches from equilibrium liquid molecular dynamics configurations produce statistically identical distributions of the structural potential energy. Again for metallic Na, it is shown that DFT quenches from stochastic configurations provide the parameters which calibrate the Hamiltonian. A statistical mechanical analysis shows how the underlying potential properties can be extracted from the distributions found in quenches from stochastic configurations.
doi_str_mv 10.1103/PhysRevE.80.051111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733855796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733855796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-94ee198e12f077040035fac360fe9dcf4e4bf480bc7ca988286abc451c8c94983</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMotla_gAfJzdPWZJPsJsdS6h8oVETPSzZ9aSO7mzbJCv32bqn1XeYdZobhh9A9JVNKCXt63x7iB_wsppJMiaDDXaAxFYJkOSuLy-PPVMZKIUboJsZvQljOJL9Go5ywgitBx2g1q7HrXHIet5C2fo2tD7jxRifXbbDZ6qBNguBicgbvfIIuOd1k0EHYHHA7ZFuNvcWN2_duHW_RldVNhLs_naCv58Xn_DVbrl7e5rNlZhjJU6Y4AFUSaG5JWRI-TBNWG1YQC2ptLAdeWy5JbUqjlZS5LHRtuKBGGsWVZBP0eOrdBb_vIaaqddFA0-gOfB-rkjEpRKmKwZmfnCb4GAPYaheGzeFQUVIdOVZnjpUk1YnjEHr4q-_rFtb_kTM49gtqjHDC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733855796</pqid></control><display><type>article</type><title>Ab initio method for locating characteristic potential-energy minima of liquids</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Holmström, E ; Bock, N ; Peery, Travis B ; Lizárraga, R ; De Lorenzi-Venneri, G ; Chisolm, Eric D ; Wallace, Duane C</creator><creatorcontrib>Holmström, E ; Bock, N ; Peery, Travis B ; Lizárraga, R ; De Lorenzi-Venneri, G ; Chisolm, Eric D ; Wallace, Duane C</creatorcontrib><description>It is possible in principle to probe the many-atom potential surface using density functional theory (DFT). This will allow us to apply DFT to the Hamiltonian formulation of atomic motion in monatomic liquids by Wallace [Phys. Rev. E 56, 4179 (1997)]. For a monatomic system, analysis of the potential surface is facilitated by the random and symmetric classification of potential-energy valleys. Since the random valleys are numerically dominant and uniform in their macroscopic potential properties, only a few quenches are necessary to establish these properties. Here we describe an efficient technique for doing this. Quenches are done from easily generated "stochastic" configurations, in which the nuclei are distributed uniformly within a constraint limiting the closeness of approach. For metallic Na with atomic pair potential interactions, it is shown that quenches from stochastic configurations and quenches from equilibrium liquid molecular dynamics configurations produce statistically identical distributions of the structural potential energy. Again for metallic Na, it is shown that DFT quenches from stochastic configurations provide the parameters which calibrate the Hamiltonian. A statistical mechanical analysis shows how the underlying potential properties can be extracted from the distributions found in quenches from stochastic configurations.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.80.051111</identifier><identifier>PMID: 20364951</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Energy Transfer ; Models, Chemical ; Models, Statistical ; Sodium - chemistry ; Solutions - chemistry ; Stochastic Processes</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-11, Vol.80 (5 Pt 1), p.051111-051111, Article 051111</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-94ee198e12f077040035fac360fe9dcf4e4bf480bc7ca988286abc451c8c94983</citedby><cites>FETCH-LOGICAL-c302t-94ee198e12f077040035fac360fe9dcf4e4bf480bc7ca988286abc451c8c94983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20364951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holmström, E</creatorcontrib><creatorcontrib>Bock, N</creatorcontrib><creatorcontrib>Peery, Travis B</creatorcontrib><creatorcontrib>Lizárraga, R</creatorcontrib><creatorcontrib>De Lorenzi-Venneri, G</creatorcontrib><creatorcontrib>Chisolm, Eric D</creatorcontrib><creatorcontrib>Wallace, Duane C</creatorcontrib><title>Ab initio method for locating characteristic potential-energy minima of liquids</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>It is possible in principle to probe the many-atom potential surface using density functional theory (DFT). This will allow us to apply DFT to the Hamiltonian formulation of atomic motion in monatomic liquids by Wallace [Phys. Rev. E 56, 4179 (1997)]. For a monatomic system, analysis of the potential surface is facilitated by the random and symmetric classification of potential-energy valleys. Since the random valleys are numerically dominant and uniform in their macroscopic potential properties, only a few quenches are necessary to establish these properties. Here we describe an efficient technique for doing this. Quenches are done from easily generated "stochastic" configurations, in which the nuclei are distributed uniformly within a constraint limiting the closeness of approach. For metallic Na with atomic pair potential interactions, it is shown that quenches from stochastic configurations and quenches from equilibrium liquid molecular dynamics configurations produce statistically identical distributions of the structural potential energy. Again for metallic Na, it is shown that DFT quenches from stochastic configurations provide the parameters which calibrate the Hamiltonian. A statistical mechanical analysis shows how the underlying potential properties can be extracted from the distributions found in quenches from stochastic configurations.</description><subject>Computer Simulation</subject><subject>Energy Transfer</subject><subject>Models, Chemical</subject><subject>Models, Statistical</subject><subject>Sodium - chemistry</subject><subject>Solutions - chemistry</subject><subject>Stochastic Processes</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE9LAzEUxIMotla_gAfJzdPWZJPsJsdS6h8oVETPSzZ9aSO7mzbJCv32bqn1XeYdZobhh9A9JVNKCXt63x7iB_wsppJMiaDDXaAxFYJkOSuLy-PPVMZKIUboJsZvQljOJL9Go5ywgitBx2g1q7HrXHIet5C2fo2tD7jxRifXbbDZ6qBNguBicgbvfIIuOd1k0EHYHHA7ZFuNvcWN2_duHW_RldVNhLs_naCv58Xn_DVbrl7e5rNlZhjJU6Y4AFUSaG5JWRI-TBNWG1YQC2ptLAdeWy5JbUqjlZS5LHRtuKBGGsWVZBP0eOrdBb_vIaaqddFA0-gOfB-rkjEpRKmKwZmfnCb4GAPYaheGzeFQUVIdOVZnjpUk1YnjEHr4q-_rFtb_kTM49gtqjHDC</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Holmström, E</creator><creator>Bock, N</creator><creator>Peery, Travis B</creator><creator>Lizárraga, R</creator><creator>De Lorenzi-Venneri, G</creator><creator>Chisolm, Eric D</creator><creator>Wallace, Duane C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Ab initio method for locating characteristic potential-energy minima of liquids</title><author>Holmström, E ; Bock, N ; Peery, Travis B ; Lizárraga, R ; De Lorenzi-Venneri, G ; Chisolm, Eric D ; Wallace, Duane C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-94ee198e12f077040035fac360fe9dcf4e4bf480bc7ca988286abc451c8c94983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer Simulation</topic><topic>Energy Transfer</topic><topic>Models, Chemical</topic><topic>Models, Statistical</topic><topic>Sodium - chemistry</topic><topic>Solutions - chemistry</topic><topic>Stochastic Processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Holmström, E</creatorcontrib><creatorcontrib>Bock, N</creatorcontrib><creatorcontrib>Peery, Travis B</creatorcontrib><creatorcontrib>Lizárraga, R</creatorcontrib><creatorcontrib>De Lorenzi-Venneri, G</creatorcontrib><creatorcontrib>Chisolm, Eric D</creatorcontrib><creatorcontrib>Wallace, Duane C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmström, E</au><au>Bock, N</au><au>Peery, Travis B</au><au>Lizárraga, R</au><au>De Lorenzi-Venneri, G</au><au>Chisolm, Eric D</au><au>Wallace, Duane C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio method for locating characteristic potential-energy minima of liquids</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>80</volume><issue>5 Pt 1</issue><spage>051111</spage><epage>051111</epage><pages>051111-051111</pages><artnum>051111</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>It is possible in principle to probe the many-atom potential surface using density functional theory (DFT). This will allow us to apply DFT to the Hamiltonian formulation of atomic motion in monatomic liquids by Wallace [Phys. Rev. E 56, 4179 (1997)]. For a monatomic system, analysis of the potential surface is facilitated by the random and symmetric classification of potential-energy valleys. Since the random valleys are numerically dominant and uniform in their macroscopic potential properties, only a few quenches are necessary to establish these properties. Here we describe an efficient technique for doing this. Quenches are done from easily generated "stochastic" configurations, in which the nuclei are distributed uniformly within a constraint limiting the closeness of approach. For metallic Na with atomic pair potential interactions, it is shown that quenches from stochastic configurations and quenches from equilibrium liquid molecular dynamics configurations produce statistically identical distributions of the structural potential energy. Again for metallic Na, it is shown that DFT quenches from stochastic configurations provide the parameters which calibrate the Hamiltonian. A statistical mechanical analysis shows how the underlying potential properties can be extracted from the distributions found in quenches from stochastic configurations.</abstract><cop>United States</cop><pmid>20364951</pmid><doi>10.1103/PhysRevE.80.051111</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-11, Vol.80 (5 Pt 1), p.051111-051111, Article 051111
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_733855796
source MEDLINE; American Physical Society Journals
subjects Computer Simulation
Energy Transfer
Models, Chemical
Models, Statistical
Sodium - chemistry
Solutions - chemistry
Stochastic Processes
title Ab initio method for locating characteristic potential-energy minima of liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20method%20for%20locating%20characteristic%20potential-energy%20minima%20of%20liquids&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Holmstr%C3%B6m,%20E&rft.date=2009-11-01&rft.volume=80&rft.issue=5%20Pt%201&rft.spage=051111&rft.epage=051111&rft.pages=051111-051111&rft.artnum=051111&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.80.051111&rft_dat=%3Cproquest_cross%3E733855796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733855796&rft_id=info:pmid/20364951&rfr_iscdi=true