On the confidence interval of the equivalence point in linear titrations

As the point of intersection in linear-branch titration curves results from two optimized linear regressions, calculated by least-squares from n 1 and n 2 pairs of values of the signal y as a function of the added volume of titrant υ, the value of the equivalence volume V e has the character of an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 1978-10, Vol.25 (10), p.593-596
Hauptverfasser: Liteanu, Candin, Rîcă, Ion, Liteanu, Victor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 10
container_start_page 593
container_title Talanta (Oxford)
container_volume 25
creator Liteanu, Candin
Rîcă, Ion
Liteanu, Victor
description As the point of intersection in linear-branch titration curves results from two optimized linear regressions, calculated by least-squares from n 1 and n 2 pairs of values of the signal y as a function of the added volume of titrant υ, the value of the equivalence volume V e has the character of an estimated average V e hence a confidence interval is associated with it. If the point of intersection V e belongs concomitantly to both regressions then the same value of y e should correspond to the two extreme values V′ e and V′ e of the confidence interval as to V e itself. Consequently, the two segments of the confidence interval are obtained by averaging each of the two unequal segments of the separate confidence intervals. Alternatively, considering that multiple estimates of V e can be obtained, the confidence interval can be calculated from the normally distributed random variables Δ a′ and Δ b′ of the two linear regressions.
doi_str_mv 10.1016/0039-9140(78)80154-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733821689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0039914078801544</els_id><sourcerecordid>733821689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d30d8391c12283243d162035aa06a512ca572b8a640fc42dda17d35ad28c10433</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMotlbfQGRv6mE1k8nuZi-CFLVCoRc9hzTJYmS7aZNU8O3dbYvePA3D_80M8xFyCfQOKJT3lGKd18DpTSVuBYWC5_yIjEFUmGNR4TEZ_yIjchbjJ6WUIcVTMgJRlwwRxmS26LL0YTPtu8YZ22mbuS7Z8KXazDe7yG62rm932dr3aU9kreusCllyKajkfBfPyUmj2mgvDnVC3p-f3qazfL54eZ0-znONRZ1yg9QIrEEDYwIZRwMlo1goRUtVANOqqNhSqJLTRnNmjILK9LFhQgPliBNyvd-7Dn6ztTHJlYvatq3qrN9GWSEKBqWoe5LvSR18jME2ch3cSoVvCVQOCuXgRw5-ZCXkTqHk_djV4cB2ubLmb-jgrAce9oDt3_xyNsio3WDHuGB1ksa7_y_8AMT5ftc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733821689</pqid></control><display><type>article</type><title>On the confidence interval of the equivalence point in linear titrations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liteanu, Candin ; Rîcă, Ion ; Liteanu, Victor</creator><creatorcontrib>Liteanu, Candin ; Rîcă, Ion ; Liteanu, Victor</creatorcontrib><description>As the point of intersection in linear-branch titration curves results from two optimized linear regressions, calculated by least-squares from n 1 and n 2 pairs of values of the signal y as a function of the added volume of titrant υ, the value of the equivalence volume V e has the character of an estimated average V e hence a confidence interval is associated with it. If the point of intersection V e belongs concomitantly to both regressions then the same value of y e should correspond to the two extreme values V′ e and V′ e of the confidence interval as to V e itself. Consequently, the two segments of the confidence interval are obtained by averaging each of the two unequal segments of the separate confidence intervals. Alternatively, considering that multiple estimates of V e can be obtained, the confidence interval can be calculated from the normally distributed random variables Δ a′ and Δ b′ of the two linear regressions.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/0039-9140(78)80154-4</identifier><identifier>PMID: 18962331</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><ispartof>Talanta (Oxford), 1978-10, Vol.25 (10), p.593-596</ispartof><rights>1978</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d30d8391c12283243d162035aa06a512ca572b8a640fc42dda17d35ad28c10433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0039-9140(78)80154-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18962331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liteanu, Candin</creatorcontrib><creatorcontrib>Rîcă, Ion</creatorcontrib><creatorcontrib>Liteanu, Victor</creatorcontrib><title>On the confidence interval of the equivalence point in linear titrations</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>As the point of intersection in linear-branch titration curves results from two optimized linear regressions, calculated by least-squares from n 1 and n 2 pairs of values of the signal y as a function of the added volume of titrant υ, the value of the equivalence volume V e has the character of an estimated average V e hence a confidence interval is associated with it. If the point of intersection V e belongs concomitantly to both regressions then the same value of y e should correspond to the two extreme values V′ e and V′ e of the confidence interval as to V e itself. Consequently, the two segments of the confidence interval are obtained by averaging each of the two unequal segments of the separate confidence intervals. Alternatively, considering that multiple estimates of V e can be obtained, the confidence interval can be calculated from the normally distributed random variables Δ a′ and Δ b′ of the two linear regressions.</description><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMotlbfQGRv6mE1k8nuZi-CFLVCoRc9hzTJYmS7aZNU8O3dbYvePA3D_80M8xFyCfQOKJT3lGKd18DpTSVuBYWC5_yIjEFUmGNR4TEZ_yIjchbjJ6WUIcVTMgJRlwwRxmS26LL0YTPtu8YZ22mbuS7Z8KXazDe7yG62rm932dr3aU9kreusCllyKajkfBfPyUmj2mgvDnVC3p-f3qazfL54eZ0-znONRZ1yg9QIrEEDYwIZRwMlo1goRUtVANOqqNhSqJLTRnNmjILK9LFhQgPliBNyvd-7Dn6ztTHJlYvatq3qrN9GWSEKBqWoe5LvSR18jME2ch3cSoVvCVQOCuXgRw5-ZCXkTqHk_djV4cB2ubLmb-jgrAce9oDt3_xyNsio3WDHuGB1ksa7_y_8AMT5ftc</recordid><startdate>197810</startdate><enddate>197810</enddate><creator>Liteanu, Candin</creator><creator>Rîcă, Ion</creator><creator>Liteanu, Victor</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>197810</creationdate><title>On the confidence interval of the equivalence point in linear titrations</title><author>Liteanu, Candin ; Rîcă, Ion ; Liteanu, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d30d8391c12283243d162035aa06a512ca572b8a640fc42dda17d35ad28c10433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liteanu, Candin</creatorcontrib><creatorcontrib>Rîcă, Ion</creatorcontrib><creatorcontrib>Liteanu, Victor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liteanu, Candin</au><au>Rîcă, Ion</au><au>Liteanu, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the confidence interval of the equivalence point in linear titrations</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>1978-10</date><risdate>1978</risdate><volume>25</volume><issue>10</issue><spage>593</spage><epage>596</epage><pages>593-596</pages><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>As the point of intersection in linear-branch titration curves results from two optimized linear regressions, calculated by least-squares from n 1 and n 2 pairs of values of the signal y as a function of the added volume of titrant υ, the value of the equivalence volume V e has the character of an estimated average V e hence a confidence interval is associated with it. If the point of intersection V e belongs concomitantly to both regressions then the same value of y e should correspond to the two extreme values V′ e and V′ e of the confidence interval as to V e itself. Consequently, the two segments of the confidence interval are obtained by averaging each of the two unequal segments of the separate confidence intervals. Alternatively, considering that multiple estimates of V e can be obtained, the confidence interval can be calculated from the normally distributed random variables Δ a′ and Δ b′ of the two linear regressions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18962331</pmid><doi>10.1016/0039-9140(78)80154-4</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 1978-10, Vol.25 (10), p.593-596
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_733821689
source Access via ScienceDirect (Elsevier)
title On the confidence interval of the equivalence point in linear titrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20confidence%20interval%20of%20the%20equivalence%20point%20in%20linear%20titrations&rft.jtitle=Talanta%20(Oxford)&rft.au=Liteanu,%20Candin&rft.date=1978-10&rft.volume=25&rft.issue=10&rft.spage=593&rft.epage=596&rft.pages=593-596&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/0039-9140(78)80154-4&rft_dat=%3Cproquest_cross%3E733821689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733821689&rft_id=info:pmid/18962331&rft_els_id=0039914078801544&rfr_iscdi=true