Cell separation by an aqueous two-phase system in a microfluidic device

We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2009-10, Vol.134 (10), p.1994-1998
Hauptverfasser: TSUKAMOTO, Masatoshi, TAIRA, Shu, YAMAMURA, Shohei, MORITA, Yasutaka, NAGATANI, Naoki, TAKAMURA, Yuzuru, TAMIYA, Eiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1998
container_issue 10
container_start_page 1994
container_title Analyst (London)
container_volume 134
creator TSUKAMOTO, Masatoshi
TAIRA, Shu
YAMAMURA, Shohei
MORITA, Yasutaka
NAGATANI, Naoki
TAKAMURA, Yuzuru
TAMIYA, Eiichi
description We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.
doi_str_mv 10.1039/b909597g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733812046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733812046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</originalsourceid><addsrcrecordid>eNp90EtLxDAQB_Agiruugp9AcvFxqebd5CiLrsKCFz2XaZpqpC-bVtlvb5atevM0DPNjmPkjdErJNSXc3OSGGGnS1z00p1yJREqm99GcEMITpqSYoaMQ3mNLiSSHaEZNqjQjco5WS1dVOLgOehh82-B8g6HB8DG6dgx4-GqT7g2Cw2ETBldjH2e49rZvy2r0hbe4cJ_eumN0UEIV3MlUF-jl_u55-ZCsn1aPy9t1YrniQyIkzYWyVDtnmKDAU3ACCl5qqYEzaQVjFnKdCpkzUEwBzYuiIJJSJRlovkCXu71d38Ybw5DVPtj4AzTbg7OUc00ZESrKi38lF0YqExNaoKsdjE-F0Lsy63pfQ7_JKMm28WY_8UZ6Nu0c89oVf3DKM4LzCUCwUJU9NNaHX8cYoZJE9w3Y74Bs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34956900</pqid></control><display><type>article</type><title>Cell separation by an aqueous two-phase system in a microfluidic device</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>TSUKAMOTO, Masatoshi ; TAIRA, Shu ; YAMAMURA, Shohei ; MORITA, Yasutaka ; NAGATANI, Naoki ; TAKAMURA, Yuzuru ; TAMIYA, Eiichi</creator><creatorcontrib>TSUKAMOTO, Masatoshi ; TAIRA, Shu ; YAMAMURA, Shohei ; MORITA, Yasutaka ; NAGATANI, Naoki ; TAKAMURA, Yuzuru ; TAMIYA, Eiichi</creatorcontrib><description>We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/b909597g</identifier><identifier>PMID: 19768205</identifier><identifier>CODEN: ANALAO</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Analytical chemistry ; Applied sciences ; Cell Separation - instrumentation ; Cell Separation - methods ; Chemistry ; Dextrans - chemistry ; Erythrocytes - cytology ; Exact sciences and technology ; Global environmental pollution ; Humans ; Hydrophobic and Hydrophilic Interactions ; Jurkat Cells ; Microfluidic Analytical Techniques ; Microspheres ; Microtechnology ; Pollution ; Polyethylene Glycols - chemistry ; Water - chemistry</subject><ispartof>Analyst (London), 2009-10, Vol.134 (10), p.1994-1998</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</citedby><cites>FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22015005$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19768205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TSUKAMOTO, Masatoshi</creatorcontrib><creatorcontrib>TAIRA, Shu</creatorcontrib><creatorcontrib>YAMAMURA, Shohei</creatorcontrib><creatorcontrib>MORITA, Yasutaka</creatorcontrib><creatorcontrib>NAGATANI, Naoki</creatorcontrib><creatorcontrib>TAKAMURA, Yuzuru</creatorcontrib><creatorcontrib>TAMIYA, Eiichi</creatorcontrib><title>Cell separation by an aqueous two-phase system in a microfluidic device</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Cell Separation - instrumentation</subject><subject>Cell Separation - methods</subject><subject>Chemistry</subject><subject>Dextrans - chemistry</subject><subject>Erythrocytes - cytology</subject><subject>Exact sciences and technology</subject><subject>Global environmental pollution</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Jurkat Cells</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microspheres</subject><subject>Microtechnology</subject><subject>Pollution</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Water - chemistry</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtLxDAQB_Agiruugp9AcvFxqebd5CiLrsKCFz2XaZpqpC-bVtlvb5atevM0DPNjmPkjdErJNSXc3OSGGGnS1z00p1yJREqm99GcEMITpqSYoaMQ3mNLiSSHaEZNqjQjco5WS1dVOLgOehh82-B8g6HB8DG6dgx4-GqT7g2Cw2ETBldjH2e49rZvy2r0hbe4cJ_eumN0UEIV3MlUF-jl_u55-ZCsn1aPy9t1YrniQyIkzYWyVDtnmKDAU3ACCl5qqYEzaQVjFnKdCpkzUEwBzYuiIJJSJRlovkCXu71d38Ybw5DVPtj4AzTbg7OUc00ZESrKi38lF0YqExNaoKsdjE-F0Lsy63pfQ7_JKMm28WY_8UZ6Nu0c89oVf3DKM4LzCUCwUJU9NNaHX8cYoZJE9w3Y74Bs</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>TSUKAMOTO, Masatoshi</creator><creator>TAIRA, Shu</creator><creator>YAMAMURA, Shohei</creator><creator>MORITA, Yasutaka</creator><creator>NAGATANI, Naoki</creator><creator>TAKAMURA, Yuzuru</creator><creator>TAMIYA, Eiichi</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200910</creationdate><title>Cell separation by an aqueous two-phase system in a microfluidic device</title><author>TSUKAMOTO, Masatoshi ; TAIRA, Shu ; YAMAMURA, Shohei ; MORITA, Yasutaka ; NAGATANI, Naoki ; TAKAMURA, Yuzuru ; TAMIYA, Eiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Cell Separation - instrumentation</topic><topic>Cell Separation - methods</topic><topic>Chemistry</topic><topic>Dextrans - chemistry</topic><topic>Erythrocytes - cytology</topic><topic>Exact sciences and technology</topic><topic>Global environmental pollution</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Jurkat Cells</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microspheres</topic><topic>Microtechnology</topic><topic>Pollution</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSUKAMOTO, Masatoshi</creatorcontrib><creatorcontrib>TAIRA, Shu</creatorcontrib><creatorcontrib>YAMAMURA, Shohei</creatorcontrib><creatorcontrib>MORITA, Yasutaka</creatorcontrib><creatorcontrib>NAGATANI, Naoki</creatorcontrib><creatorcontrib>TAKAMURA, Yuzuru</creatorcontrib><creatorcontrib>TAMIYA, Eiichi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSUKAMOTO, Masatoshi</au><au>TAIRA, Shu</au><au>YAMAMURA, Shohei</au><au>MORITA, Yasutaka</au><au>NAGATANI, Naoki</au><au>TAKAMURA, Yuzuru</au><au>TAMIYA, Eiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell separation by an aqueous two-phase system in a microfluidic device</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2009-10</date><risdate>2009</risdate><volume>134</volume><issue>10</issue><spage>1994</spage><epage>1998</epage><pages>1994-1998</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><coden>ANALAO</coden><abstract>We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>19768205</pmid><doi>10.1039/b909597g</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2009-10, Vol.134 (10), p.1994-1998
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_miscellaneous_733812046
source Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Analytical chemistry
Applied sciences
Cell Separation - instrumentation
Cell Separation - methods
Chemistry
Dextrans - chemistry
Erythrocytes - cytology
Exact sciences and technology
Global environmental pollution
Humans
Hydrophobic and Hydrophilic Interactions
Jurkat Cells
Microfluidic Analytical Techniques
Microspheres
Microtechnology
Pollution
Polyethylene Glycols - chemistry
Water - chemistry
title Cell separation by an aqueous two-phase system in a microfluidic device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20separation%20by%20an%20aqueous%20two-phase%20system%20in%20a%20microfluidic%20device&rft.jtitle=Analyst%20(London)&rft.au=TSUKAMOTO,%20Masatoshi&rft.date=2009-10&rft.volume=134&rft.issue=10&rft.spage=1994&rft.epage=1998&rft.pages=1994-1998&rft.issn=0003-2654&rft.eissn=1364-5528&rft.coden=ANALAO&rft_id=info:doi/10.1039/b909597g&rft_dat=%3Cproquest_cross%3E733812046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34956900&rft_id=info:pmid/19768205&rfr_iscdi=true