Cell separation by an aqueous two-phase system in a microfluidic device
We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) sol...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2009-10, Vol.134 (10), p.1994-1998 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1998 |
---|---|
container_issue | 10 |
container_start_page | 1994 |
container_title | Analyst (London) |
container_volume | 134 |
creator | TSUKAMOTO, Masatoshi TAIRA, Shu YAMAMURA, Shohei MORITA, Yasutaka NAGATANI, Naoki TAKAMURA, Yuzuru TAMIYA, Eiichi |
description | We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses. |
doi_str_mv | 10.1039/b909597g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733812046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733812046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</originalsourceid><addsrcrecordid>eNp90EtLxDAQB_Agiruugp9AcvFxqebd5CiLrsKCFz2XaZpqpC-bVtlvb5atevM0DPNjmPkjdErJNSXc3OSGGGnS1z00p1yJREqm99GcEMITpqSYoaMQ3mNLiSSHaEZNqjQjco5WS1dVOLgOehh82-B8g6HB8DG6dgx4-GqT7g2Cw2ETBldjH2e49rZvy2r0hbe4cJ_eumN0UEIV3MlUF-jl_u55-ZCsn1aPy9t1YrniQyIkzYWyVDtnmKDAU3ACCl5qqYEzaQVjFnKdCpkzUEwBzYuiIJJSJRlovkCXu71d38Ybw5DVPtj4AzTbg7OUc00ZESrKi38lF0YqExNaoKsdjE-F0Lsy63pfQ7_JKMm28WY_8UZ6Nu0c89oVf3DKM4LzCUCwUJU9NNaHX8cYoZJE9w3Y74Bs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34956900</pqid></control><display><type>article</type><title>Cell separation by an aqueous two-phase system in a microfluidic device</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>TSUKAMOTO, Masatoshi ; TAIRA, Shu ; YAMAMURA, Shohei ; MORITA, Yasutaka ; NAGATANI, Naoki ; TAKAMURA, Yuzuru ; TAMIYA, Eiichi</creator><creatorcontrib>TSUKAMOTO, Masatoshi ; TAIRA, Shu ; YAMAMURA, Shohei ; MORITA, Yasutaka ; NAGATANI, Naoki ; TAKAMURA, Yuzuru ; TAMIYA, Eiichi</creatorcontrib><description>We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/b909597g</identifier><identifier>PMID: 19768205</identifier><identifier>CODEN: ANALAO</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Analytical chemistry ; Applied sciences ; Cell Separation - instrumentation ; Cell Separation - methods ; Chemistry ; Dextrans - chemistry ; Erythrocytes - cytology ; Exact sciences and technology ; Global environmental pollution ; Humans ; Hydrophobic and Hydrophilic Interactions ; Jurkat Cells ; Microfluidic Analytical Techniques ; Microspheres ; Microtechnology ; Pollution ; Polyethylene Glycols - chemistry ; Water - chemistry</subject><ispartof>Analyst (London), 2009-10, Vol.134 (10), p.1994-1998</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</citedby><cites>FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22015005$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19768205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TSUKAMOTO, Masatoshi</creatorcontrib><creatorcontrib>TAIRA, Shu</creatorcontrib><creatorcontrib>YAMAMURA, Shohei</creatorcontrib><creatorcontrib>MORITA, Yasutaka</creatorcontrib><creatorcontrib>NAGATANI, Naoki</creatorcontrib><creatorcontrib>TAKAMURA, Yuzuru</creatorcontrib><creatorcontrib>TAMIYA, Eiichi</creatorcontrib><title>Cell separation by an aqueous two-phase system in a microfluidic device</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Cell Separation - instrumentation</subject><subject>Cell Separation - methods</subject><subject>Chemistry</subject><subject>Dextrans - chemistry</subject><subject>Erythrocytes - cytology</subject><subject>Exact sciences and technology</subject><subject>Global environmental pollution</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Jurkat Cells</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microspheres</subject><subject>Microtechnology</subject><subject>Pollution</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Water - chemistry</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtLxDAQB_Agiruugp9AcvFxqebd5CiLrsKCFz2XaZpqpC-bVtlvb5atevM0DPNjmPkjdErJNSXc3OSGGGnS1z00p1yJREqm99GcEMITpqSYoaMQ3mNLiSSHaEZNqjQjco5WS1dVOLgOehh82-B8g6HB8DG6dgx4-GqT7g2Cw2ETBldjH2e49rZvy2r0hbe4cJ_eumN0UEIV3MlUF-jl_u55-ZCsn1aPy9t1YrniQyIkzYWyVDtnmKDAU3ACCl5qqYEzaQVjFnKdCpkzUEwBzYuiIJJSJRlovkCXu71d38Ybw5DVPtj4AzTbg7OUc00ZESrKi38lF0YqExNaoKsdjE-F0Lsy63pfQ7_JKMm28WY_8UZ6Nu0c89oVf3DKM4LzCUCwUJU9NNaHX8cYoZJE9w3Y74Bs</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>TSUKAMOTO, Masatoshi</creator><creator>TAIRA, Shu</creator><creator>YAMAMURA, Shohei</creator><creator>MORITA, Yasutaka</creator><creator>NAGATANI, Naoki</creator><creator>TAKAMURA, Yuzuru</creator><creator>TAMIYA, Eiichi</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200910</creationdate><title>Cell separation by an aqueous two-phase system in a microfluidic device</title><author>TSUKAMOTO, Masatoshi ; TAIRA, Shu ; YAMAMURA, Shohei ; MORITA, Yasutaka ; NAGATANI, Naoki ; TAKAMURA, Yuzuru ; TAMIYA, Eiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-451b46c18ee9241a37ae4ad3f858a325c422cab8745b2a626a1bddd0511652a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Cell Separation - instrumentation</topic><topic>Cell Separation - methods</topic><topic>Chemistry</topic><topic>Dextrans - chemistry</topic><topic>Erythrocytes - cytology</topic><topic>Exact sciences and technology</topic><topic>Global environmental pollution</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Jurkat Cells</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microspheres</topic><topic>Microtechnology</topic><topic>Pollution</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSUKAMOTO, Masatoshi</creatorcontrib><creatorcontrib>TAIRA, Shu</creatorcontrib><creatorcontrib>YAMAMURA, Shohei</creatorcontrib><creatorcontrib>MORITA, Yasutaka</creatorcontrib><creatorcontrib>NAGATANI, Naoki</creatorcontrib><creatorcontrib>TAKAMURA, Yuzuru</creatorcontrib><creatorcontrib>TAMIYA, Eiichi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSUKAMOTO, Masatoshi</au><au>TAIRA, Shu</au><au>YAMAMURA, Shohei</au><au>MORITA, Yasutaka</au><au>NAGATANI, Naoki</au><au>TAKAMURA, Yuzuru</au><au>TAMIYA, Eiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell separation by an aqueous two-phase system in a microfluidic device</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2009-10</date><risdate>2009</risdate><volume>134</volume><issue>10</issue><spage>1994</spage><epage>1998</epage><pages>1994-1998</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><coden>ANALAO</coden><abstract>We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>19768205</pmid><doi>10.1039/b909597g</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2009-10, Vol.134 (10), p.1994-1998 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_miscellaneous_733812046 |
source | Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Analytical chemistry Applied sciences Cell Separation - instrumentation Cell Separation - methods Chemistry Dextrans - chemistry Erythrocytes - cytology Exact sciences and technology Global environmental pollution Humans Hydrophobic and Hydrophilic Interactions Jurkat Cells Microfluidic Analytical Techniques Microspheres Microtechnology Pollution Polyethylene Glycols - chemistry Water - chemistry |
title | Cell separation by an aqueous two-phase system in a microfluidic device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20separation%20by%20an%20aqueous%20two-phase%20system%20in%20a%20microfluidic%20device&rft.jtitle=Analyst%20(London)&rft.au=TSUKAMOTO,%20Masatoshi&rft.date=2009-10&rft.volume=134&rft.issue=10&rft.spage=1994&rft.epage=1998&rft.pages=1994-1998&rft.issn=0003-2654&rft.eissn=1364-5528&rft.coden=ANALAO&rft_id=info:doi/10.1039/b909597g&rft_dat=%3Cproquest_cross%3E733812046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34956900&rft_id=info:pmid/19768205&rfr_iscdi=true |