Autonomous Motion of Vesicle via Ion Exchange

The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-02, Vol.26 (3), p.1610-1618
Hauptverfasser: Miura, Takaaki, Oosawa, Hideaki, Sakai, Makoto, Syundou, Yukitoshi, Ban, Takahiko, Shioi, Akihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1618
container_issue 3
container_start_page 1610
container_title Langmuir
container_volume 26
creator Miura, Takaaki
Oosawa, Hideaki
Sakai, Makoto
Syundou, Yukitoshi
Ban, Takahiko
Shioi, Akihisa
description The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.
doi_str_mv 10.1021/la9038599
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733802924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733802924</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</originalsourceid><addsrcrecordid>eNpt0E1LwzAYB_AgipvTg19AehHxUH3y1iTHMaYOJl7Ua0nTRDvaZjat6Lc3srldPD3w8ON5-SN0juEGA8G3tVZAJVfqAI0xJ5ByScQhGoNgNBUsoyN0EsIKABRl6hiNCAAFysQYpdOh961v_BCSR99Xvk28S15tqExtk89KJ4vYmn-Zd92-2VN05HQd7Nm2TtDL3fx59pAun-4Xs-ky1QxDn0qtrMBaEusKIaQseFFqKImhmeSGO4czIyhgSoqSM24Z4_GDzCnHNVAn6QRdbeauO_8x2NDnTRWMrWvd2nhpLiiVQBRhUV5vpOl8CJ11-bqrGt195xjy33DyXTjRXmynDkVjy538SyOCyy3Qwejadbo1Vdg7wmV0eO-0CfnKD10bw_hn4Q_CV3VT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733802924</pqid></control><display><type>article</type><title>Autonomous Motion of Vesicle via Ion Exchange</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Miura, Takaaki ; Oosawa, Hideaki ; Sakai, Makoto ; Syundou, Yukitoshi ; Ban, Takahiko ; Shioi, Akihisa</creator><creatorcontrib>Miura, Takaaki ; Oosawa, Hideaki ; Sakai, Makoto ; Syundou, Yukitoshi ; Ban, Takahiko ; Shioi, Akihisa</creatorcontrib><description>The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la9038599</identifier><identifier>PMID: 20030347</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams ; Exact sciences and technology ; General and physical chemistry ; Membranes ; Surface physical chemistry</subject><ispartof>Langmuir, 2010-02, Vol.26 (3), p.1610-1618</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</citedby><cites>FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la9038599$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la9038599$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22580341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20030347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miura, Takaaki</creatorcontrib><creatorcontrib>Oosawa, Hideaki</creatorcontrib><creatorcontrib>Sakai, Makoto</creatorcontrib><creatorcontrib>Syundou, Yukitoshi</creatorcontrib><creatorcontrib>Ban, Takahiko</creatorcontrib><creatorcontrib>Shioi, Akihisa</creatorcontrib><title>Autonomous Motion of Vesicle via Ion Exchange</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Membranes</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LwzAYB_AgipvTg19AehHxUH3y1iTHMaYOJl7Ua0nTRDvaZjat6Lc3srldPD3w8ON5-SN0juEGA8G3tVZAJVfqAI0xJ5ByScQhGoNgNBUsoyN0EsIKABRl6hiNCAAFysQYpdOh961v_BCSR99Xvk28S15tqExtk89KJ4vYmn-Zd92-2VN05HQd7Nm2TtDL3fx59pAun-4Xs-ky1QxDn0qtrMBaEusKIaQseFFqKImhmeSGO4czIyhgSoqSM24Z4_GDzCnHNVAn6QRdbeauO_8x2NDnTRWMrWvd2nhpLiiVQBRhUV5vpOl8CJ11-bqrGt195xjy33DyXTjRXmynDkVjy538SyOCyy3Qwejadbo1Vdg7wmV0eO-0CfnKD10bw_hn4Q_CV3VT</recordid><startdate>20100202</startdate><enddate>20100202</enddate><creator>Miura, Takaaki</creator><creator>Oosawa, Hideaki</creator><creator>Sakai, Makoto</creator><creator>Syundou, Yukitoshi</creator><creator>Ban, Takahiko</creator><creator>Shioi, Akihisa</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100202</creationdate><title>Autonomous Motion of Vesicle via Ion Exchange</title><author>Miura, Takaaki ; Oosawa, Hideaki ; Sakai, Makoto ; Syundou, Yukitoshi ; Ban, Takahiko ; Shioi, Akihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Membranes</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Takaaki</creatorcontrib><creatorcontrib>Oosawa, Hideaki</creatorcontrib><creatorcontrib>Sakai, Makoto</creatorcontrib><creatorcontrib>Syundou, Yukitoshi</creatorcontrib><creatorcontrib>Ban, Takahiko</creatorcontrib><creatorcontrib>Shioi, Akihisa</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Takaaki</au><au>Oosawa, Hideaki</au><au>Sakai, Makoto</au><au>Syundou, Yukitoshi</au><au>Ban, Takahiko</au><au>Shioi, Akihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Motion of Vesicle via Ion Exchange</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-02-02</date><risdate>2010</risdate><volume>26</volume><issue>3</issue><spage>1610</spage><epage>1618</epage><pages>1610-1618</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20030347</pmid><doi>10.1021/la9038599</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2010-02, Vol.26 (3), p.1610-1618
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_733802924
source ACS_美国化学学会期刊(与NSTL共建)
subjects Chemistry
Colloidal state and disperse state
Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams
Exact sciences and technology
General and physical chemistry
Membranes
Surface physical chemistry
title Autonomous Motion of Vesicle via Ion Exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Motion%20of%20Vesicle%20via%20Ion%20Exchange&rft.jtitle=Langmuir&rft.au=Miura,%20Takaaki&rft.date=2010-02-02&rft.volume=26&rft.issue=3&rft.spage=1610&rft.epage=1618&rft.pages=1610-1618&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la9038599&rft_dat=%3Cproquest_cross%3E733802924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733802924&rft_id=info:pmid/20030347&rfr_iscdi=true