Autonomous Motion of Vesicle via Ion Exchange
The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move,...
Gespeichert in:
Veröffentlicht in: | Langmuir 2010-02, Vol.26 (3), p.1610-1618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1618 |
---|---|
container_issue | 3 |
container_start_page | 1610 |
container_title | Langmuir |
container_volume | 26 |
creator | Miura, Takaaki Oosawa, Hideaki Sakai, Makoto Syundou, Yukitoshi Ban, Takahiko Shioi, Akihisa |
description | The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed. |
doi_str_mv | 10.1021/la9038599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733802924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733802924</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</originalsourceid><addsrcrecordid>eNpt0E1LwzAYB_AgipvTg19AehHxUH3y1iTHMaYOJl7Ua0nTRDvaZjat6Lc3srldPD3w8ON5-SN0juEGA8G3tVZAJVfqAI0xJ5ByScQhGoNgNBUsoyN0EsIKABRl6hiNCAAFysQYpdOh961v_BCSR99Xvk28S15tqExtk89KJ4vYmn-Zd92-2VN05HQd7Nm2TtDL3fx59pAun-4Xs-ky1QxDn0qtrMBaEusKIaQseFFqKImhmeSGO4czIyhgSoqSM24Z4_GDzCnHNVAn6QRdbeauO_8x2NDnTRWMrWvd2nhpLiiVQBRhUV5vpOl8CJ11-bqrGt195xjy33DyXTjRXmynDkVjy538SyOCyy3Qwejadbo1Vdg7wmV0eO-0CfnKD10bw_hn4Q_CV3VT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733802924</pqid></control><display><type>article</type><title>Autonomous Motion of Vesicle via Ion Exchange</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Miura, Takaaki ; Oosawa, Hideaki ; Sakai, Makoto ; Syundou, Yukitoshi ; Ban, Takahiko ; Shioi, Akihisa</creator><creatorcontrib>Miura, Takaaki ; Oosawa, Hideaki ; Sakai, Makoto ; Syundou, Yukitoshi ; Ban, Takahiko ; Shioi, Akihisa</creatorcontrib><description>The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la9038599</identifier><identifier>PMID: 20030347</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams ; Exact sciences and technology ; General and physical chemistry ; Membranes ; Surface physical chemistry</subject><ispartof>Langmuir, 2010-02, Vol.26 (3), p.1610-1618</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</citedby><cites>FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la9038599$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la9038599$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22580341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20030347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miura, Takaaki</creatorcontrib><creatorcontrib>Oosawa, Hideaki</creatorcontrib><creatorcontrib>Sakai, Makoto</creatorcontrib><creatorcontrib>Syundou, Yukitoshi</creatorcontrib><creatorcontrib>Ban, Takahiko</creatorcontrib><creatorcontrib>Shioi, Akihisa</creatorcontrib><title>Autonomous Motion of Vesicle via Ion Exchange</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Membranes</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LwzAYB_AgipvTg19AehHxUH3y1iTHMaYOJl7Ua0nTRDvaZjat6Lc3srldPD3w8ON5-SN0juEGA8G3tVZAJVfqAI0xJ5ByScQhGoNgNBUsoyN0EsIKABRl6hiNCAAFysQYpdOh961v_BCSR99Xvk28S15tqExtk89KJ4vYmn-Zd92-2VN05HQd7Nm2TtDL3fx59pAun-4Xs-ky1QxDn0qtrMBaEusKIaQseFFqKImhmeSGO4czIyhgSoqSM24Z4_GDzCnHNVAn6QRdbeauO_8x2NDnTRWMrWvd2nhpLiiVQBRhUV5vpOl8CJ11-bqrGt195xjy33DyXTjRXmynDkVjy538SyOCyy3Qwejadbo1Vdg7wmV0eO-0CfnKD10bw_hn4Q_CV3VT</recordid><startdate>20100202</startdate><enddate>20100202</enddate><creator>Miura, Takaaki</creator><creator>Oosawa, Hideaki</creator><creator>Sakai, Makoto</creator><creator>Syundou, Yukitoshi</creator><creator>Ban, Takahiko</creator><creator>Shioi, Akihisa</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100202</creationdate><title>Autonomous Motion of Vesicle via Ion Exchange</title><author>Miura, Takaaki ; Oosawa, Hideaki ; Sakai, Makoto ; Syundou, Yukitoshi ; Ban, Takahiko ; Shioi, Akihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-8a9e71a82efb7788b5bda0d2c3685c5ff16c730132bd545e445a906f9f5a03f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Membranes</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Takaaki</creatorcontrib><creatorcontrib>Oosawa, Hideaki</creatorcontrib><creatorcontrib>Sakai, Makoto</creatorcontrib><creatorcontrib>Syundou, Yukitoshi</creatorcontrib><creatorcontrib>Ban, Takahiko</creatorcontrib><creatorcontrib>Shioi, Akihisa</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Takaaki</au><au>Oosawa, Hideaki</au><au>Sakai, Makoto</au><au>Syundou, Yukitoshi</au><au>Ban, Takahiko</au><au>Shioi, Akihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Motion of Vesicle via Ion Exchange</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-02-02</date><risdate>2010</risdate><volume>26</volume><issue>3</issue><spage>1610</spage><epage>1618</epage><pages>1610-1618</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The autonomous motion of vesicle is observed in a simple chemical system. A vesicle composed of didodecyldimethylammonium bromide DDAB breaks down by ion exchange from Br− to I−. When an electrolyte is supplied to vesicles, some of them begin to move after an induction period. They continue to move, leaving behind the reaction products on the trail. The ion exchange decreases the vesicle size, and smaller vesicles remain after the motion. We examine the characteristics of this motion. The surface tension of the DDAB-containing aqueous phase depends on the KI concentration. Considering this result carefully, we conclude that vesicles can move when the ion exchange from Br− to I− proceeds irreversibly. Then, inhomogeneity in the vesicle membrane develops because of the coagulating nature of the product, didodecyldimethylammonium iodide (DDAI), which is sparingly soluble in water. Inhomogeneous properties of vesicle membranes are then generated, which induce surface transport of the reaction product and flow in the water pool. As a result, a couple of convection rolls appear in the water pool of the vesicle. The convection rolls drive vesicle motion. A simple model for the semiquantitative description is proposed.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20030347</pmid><doi>10.1021/la9038599</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2010-02, Vol.26 (3), p.1610-1618 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_733802924 |
source | ACS_美国化学学会期刊(与NSTL共建) |
subjects | Chemistry Colloidal state and disperse state Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams Exact sciences and technology General and physical chemistry Membranes Surface physical chemistry |
title | Autonomous Motion of Vesicle via Ion Exchange |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Motion%20of%20Vesicle%20via%20Ion%20Exchange&rft.jtitle=Langmuir&rft.au=Miura,%20Takaaki&rft.date=2010-02-02&rft.volume=26&rft.issue=3&rft.spage=1610&rft.epage=1618&rft.pages=1610-1618&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la9038599&rft_dat=%3Cproquest_cross%3E733802924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733802924&rft_id=info:pmid/20030347&rfr_iscdi=true |