Estimating a preference-based index from the Japanese SF-36

Abstract Objective The main objective of the study was to estimate a preference-based Short Form (SF)-6D index from the SF-36 for Japan and compare it with the UK results. Study Design and Setting The SF-6D was translated into Japanese. Two hundred and forty-nine health states defined by this versio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2009-12, Vol.62 (12), p.1323-1331
Hauptverfasser: Brazier, John E, Fukuhara, Shunichi, Roberts, Jennifer, Kharroubi, Samer, Yamamoto, Yosuke, Ikeda, Shunya, Doherty, Jim, Kurokawa, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 12
container_start_page 1323
container_title Journal of clinical epidemiology
container_volume 62
creator Brazier, John E
Fukuhara, Shunichi
Roberts, Jennifer
Kharroubi, Samer
Yamamoto, Yosuke
Ikeda, Shunya
Doherty, Jim
Kurokawa, Kiyoshi
description Abstract Objective The main objective of the study was to estimate a preference-based Short Form (SF)-6D index from the SF-36 for Japan and compare it with the UK results. Study Design and Setting The SF-6D was translated into Japanese. Two hundred and forty-nine health states defined by this version of the SF-6D were then valued by a representative sample of 600 members of the Japanese general population using standard gamble (SG). These health-state values were modeled using classical parametric random-effect methods with individual-level data and ordinary least squares (OLS) on mean health-state values, together with a new nonparametric approach using Bayesian methods of estimation. Results All parametric models estimated on Japanese data were found to perform less well than their UK counterparts in terms of poorer goodness of fit, more inconsistencies, larger prediction errors and bias, and evidence of systematic bias in the predictions. Nonparametric models produce a substantial improvement in out-of-sample predictions. The physical, role, and social dimensions have relatively larger decrements than pain and mental health compared with those in the United Kingdom. Conclusion The differences between Japanese and UK valuations of the SF-6D make it important to use the Japanese valuation data set estimated using the nonparametric Bayesian technique presented in this article.
doi_str_mv 10.1016/j.jclinepi.2009.01.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733795050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0895435609000626</els_id><sourcerecordid>2734584101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-45f9da635b580f450ce733007099ca7609de6ff7b4f9dec0119aea1006aefd453</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EotvCK1SREOKUMBPHdiwkBKraAqrEoXC2vM4YHLJJsLOIvj2OdqFSL5x8-eb3P5-GsXOECgHl677q3RBGmkNVA-gKsIK6fsQ22Kq2FLrGx2wDrRZlw4U8Yacp9QCoQImn7AS1RNEKuWFvLtMSdnYJ47fCFnMkT5FGR-XWJuqKMHb0u_Bx2hXLdyo-2dmOlKi4vSq5fMaeeDsken58z9jXq8svFx_Km8_XHy_e35RONmopG-F1ZyUXW9GCbwQ4UpwDKNDaWSVBdyS9V9smc-QAUVuyCCAt-a4R_Iy9OuTOcfq5p7SYXUiOhiF3mfbJ5DSlBQjI5IsHZD_t45jLGQTOUYsGVabkgXJxSimvbOaYHcS7DJnVrunNX7tmtWsATbabB8-P8fvtjrr7saPODLw8AjY5O_hoRxfSP66usdFCrty7A0dZ269A0SQXVu1diOQW003h_13ePohYqZB__UF3lO73Nqk2YG7XW1hPATRks7XkfwDMLa3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033195417</pqid></control><display><type>article</type><title>Estimating a preference-based index from the Japanese SF-36</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Brazier, John E ; Fukuhara, Shunichi ; Roberts, Jennifer ; Kharroubi, Samer ; Yamamoto, Yosuke ; Ikeda, Shunya ; Doherty, Jim ; Kurokawa, Kiyoshi</creator><creatorcontrib>Brazier, John E ; Fukuhara, Shunichi ; Roberts, Jennifer ; Kharroubi, Samer ; Yamamoto, Yosuke ; Ikeda, Shunya ; Doherty, Jim ; Kurokawa, Kiyoshi</creatorcontrib><description>Abstract Objective The main objective of the study was to estimate a preference-based Short Form (SF)-6D index from the SF-36 for Japan and compare it with the UK results. Study Design and Setting The SF-6D was translated into Japanese. Two hundred and forty-nine health states defined by this version of the SF-6D were then valued by a representative sample of 600 members of the Japanese general population using standard gamble (SG). These health-state values were modeled using classical parametric random-effect methods with individual-level data and ordinary least squares (OLS) on mean health-state values, together with a new nonparametric approach using Bayesian methods of estimation. Results All parametric models estimated on Japanese data were found to perform less well than their UK counterparts in terms of poorer goodness of fit, more inconsistencies, larger prediction errors and bias, and evidence of systematic bias in the predictions. Nonparametric models produce a substantial improvement in out-of-sample predictions. The physical, role, and social dimensions have relatively larger decrements than pain and mental health compared with those in the United Kingdom. Conclusion The differences between Japanese and UK valuations of the SF-6D make it important to use the Japanese valuation data set estimated using the nonparametric Bayesian technique presented in this article.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2009.01.022</identifier><identifier>PMID: 19615856</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Activities of Daily Living ; Analysis. Health state ; Bayes Theorem ; Bayesian modeling ; Biological and medical sciences ; Classification ; Cross-Cultural Comparison ; Cross-cultural comparisons ; Economic models ; Epidemiology ; General aspects ; Health Status Indicators ; Humans ; Internal Medicine ; Japan ; Medical sciences ; Methods ; Models, Statistical ; Older people ; Pain ; Polls &amp; surveys ; Preference-based measures ; Preferences ; Psychometrics ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; QALYs ; Quality of life ; Quality-Adjusted Life Years ; SF-6D ; Studies</subject><ispartof>Journal of clinical epidemiology, 2009-12, Vol.62 (12), p.1323-1331</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-45f9da635b580f450ce733007099ca7609de6ff7b4f9dec0119aea1006aefd453</citedby><cites>FETCH-LOGICAL-c647t-45f9da635b580f450ce733007099ca7609de6ff7b4f9dec0119aea1006aefd453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1033195417?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22149566$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19615856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brazier, John E</creatorcontrib><creatorcontrib>Fukuhara, Shunichi</creatorcontrib><creatorcontrib>Roberts, Jennifer</creatorcontrib><creatorcontrib>Kharroubi, Samer</creatorcontrib><creatorcontrib>Yamamoto, Yosuke</creatorcontrib><creatorcontrib>Ikeda, Shunya</creatorcontrib><creatorcontrib>Doherty, Jim</creatorcontrib><creatorcontrib>Kurokawa, Kiyoshi</creatorcontrib><title>Estimating a preference-based index from the Japanese SF-36</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Abstract Objective The main objective of the study was to estimate a preference-based Short Form (SF)-6D index from the SF-36 for Japan and compare it with the UK results. Study Design and Setting The SF-6D was translated into Japanese. Two hundred and forty-nine health states defined by this version of the SF-6D were then valued by a representative sample of 600 members of the Japanese general population using standard gamble (SG). These health-state values were modeled using classical parametric random-effect methods with individual-level data and ordinary least squares (OLS) on mean health-state values, together with a new nonparametric approach using Bayesian methods of estimation. Results All parametric models estimated on Japanese data were found to perform less well than their UK counterparts in terms of poorer goodness of fit, more inconsistencies, larger prediction errors and bias, and evidence of systematic bias in the predictions. Nonparametric models produce a substantial improvement in out-of-sample predictions. The physical, role, and social dimensions have relatively larger decrements than pain and mental health compared with those in the United Kingdom. Conclusion The differences between Japanese and UK valuations of the SF-6D make it important to use the Japanese valuation data set estimated using the nonparametric Bayesian technique presented in this article.</description><subject>Activities of Daily Living</subject><subject>Analysis. Health state</subject><subject>Bayes Theorem</subject><subject>Bayesian modeling</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Cross-Cultural Comparison</subject><subject>Cross-cultural comparisons</subject><subject>Economic models</subject><subject>Epidemiology</subject><subject>General aspects</subject><subject>Health Status Indicators</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Japan</subject><subject>Medical sciences</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Older people</subject><subject>Pain</subject><subject>Polls &amp; surveys</subject><subject>Preference-based measures</subject><subject>Preferences</subject><subject>Psychometrics</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>QALYs</subject><subject>Quality of life</subject><subject>Quality-Adjusted Life Years</subject><subject>SF-6D</subject><subject>Studies</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFksFu1DAQhi0EotvCK1SREOKUMBPHdiwkBKraAqrEoXC2vM4YHLJJsLOIvj2OdqFSL5x8-eb3P5-GsXOECgHl677q3RBGmkNVA-gKsIK6fsQ22Kq2FLrGx2wDrRZlw4U8Yacp9QCoQImn7AS1RNEKuWFvLtMSdnYJ47fCFnMkT5FGR-XWJuqKMHb0u_Bx2hXLdyo-2dmOlKi4vSq5fMaeeDsken58z9jXq8svFx_Km8_XHy_e35RONmopG-F1ZyUXW9GCbwQ4UpwDKNDaWSVBdyS9V9smc-QAUVuyCCAt-a4R_Iy9OuTOcfq5p7SYXUiOhiF3mfbJ5DSlBQjI5IsHZD_t45jLGQTOUYsGVabkgXJxSimvbOaYHcS7DJnVrunNX7tmtWsATbabB8-P8fvtjrr7saPODLw8AjY5O_hoRxfSP66usdFCrty7A0dZ269A0SQXVu1diOQW003h_13ePohYqZB__UF3lO73Nqk2YG7XW1hPATRks7XkfwDMLa3I</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Brazier, John E</creator><creator>Fukuhara, Shunichi</creator><creator>Roberts, Jennifer</creator><creator>Kharroubi, Samer</creator><creator>Yamamoto, Yosuke</creator><creator>Ikeda, Shunya</creator><creator>Doherty, Jim</creator><creator>Kurokawa, Kiyoshi</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20091201</creationdate><title>Estimating a preference-based index from the Japanese SF-36</title><author>Brazier, John E ; Fukuhara, Shunichi ; Roberts, Jennifer ; Kharroubi, Samer ; Yamamoto, Yosuke ; Ikeda, Shunya ; Doherty, Jim ; Kurokawa, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-45f9da635b580f450ce733007099ca7609de6ff7b4f9dec0119aea1006aefd453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Activities of Daily Living</topic><topic>Analysis. Health state</topic><topic>Bayes Theorem</topic><topic>Bayesian modeling</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Cross-Cultural Comparison</topic><topic>Cross-cultural comparisons</topic><topic>Economic models</topic><topic>Epidemiology</topic><topic>General aspects</topic><topic>Health Status Indicators</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Japan</topic><topic>Medical sciences</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Older people</topic><topic>Pain</topic><topic>Polls &amp; surveys</topic><topic>Preference-based measures</topic><topic>Preferences</topic><topic>Psychometrics</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>QALYs</topic><topic>Quality of life</topic><topic>Quality-Adjusted Life Years</topic><topic>SF-6D</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brazier, John E</creatorcontrib><creatorcontrib>Fukuhara, Shunichi</creatorcontrib><creatorcontrib>Roberts, Jennifer</creatorcontrib><creatorcontrib>Kharroubi, Samer</creatorcontrib><creatorcontrib>Yamamoto, Yosuke</creatorcontrib><creatorcontrib>Ikeda, Shunya</creatorcontrib><creatorcontrib>Doherty, Jim</creatorcontrib><creatorcontrib>Kurokawa, Kiyoshi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brazier, John E</au><au>Fukuhara, Shunichi</au><au>Roberts, Jennifer</au><au>Kharroubi, Samer</au><au>Yamamoto, Yosuke</au><au>Ikeda, Shunya</au><au>Doherty, Jim</au><au>Kurokawa, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating a preference-based index from the Japanese SF-36</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>62</volume><issue>12</issue><spage>1323</spage><epage>1331</epage><pages>1323-1331</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Abstract Objective The main objective of the study was to estimate a preference-based Short Form (SF)-6D index from the SF-36 for Japan and compare it with the UK results. Study Design and Setting The SF-6D was translated into Japanese. Two hundred and forty-nine health states defined by this version of the SF-6D were then valued by a representative sample of 600 members of the Japanese general population using standard gamble (SG). These health-state values were modeled using classical parametric random-effect methods with individual-level data and ordinary least squares (OLS) on mean health-state values, together with a new nonparametric approach using Bayesian methods of estimation. Results All parametric models estimated on Japanese data were found to perform less well than their UK counterparts in terms of poorer goodness of fit, more inconsistencies, larger prediction errors and bias, and evidence of systematic bias in the predictions. Nonparametric models produce a substantial improvement in out-of-sample predictions. The physical, role, and social dimensions have relatively larger decrements than pain and mental health compared with those in the United Kingdom. Conclusion The differences between Japanese and UK valuations of the SF-6D make it important to use the Japanese valuation data set estimated using the nonparametric Bayesian technique presented in this article.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>19615856</pmid><doi>10.1016/j.jclinepi.2009.01.022</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-4356
ispartof Journal of clinical epidemiology, 2009-12, Vol.62 (12), p.1323-1331
issn 0895-4356
1878-5921
language eng
recordid cdi_proquest_miscellaneous_733795050
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Activities of Daily Living
Analysis. Health state
Bayes Theorem
Bayesian modeling
Biological and medical sciences
Classification
Cross-Cultural Comparison
Cross-cultural comparisons
Economic models
Epidemiology
General aspects
Health Status Indicators
Humans
Internal Medicine
Japan
Medical sciences
Methods
Models, Statistical
Older people
Pain
Polls & surveys
Preference-based measures
Preferences
Psychometrics
Public health. Hygiene
Public health. Hygiene-occupational medicine
QALYs
Quality of life
Quality-Adjusted Life Years
SF-6D
Studies
title Estimating a preference-based index from the Japanese SF-36
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20a%20preference-based%20index%20from%20the%20Japanese%20SF-36&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Brazier,%20John%20E&rft.date=2009-12-01&rft.volume=62&rft.issue=12&rft.spage=1323&rft.epage=1331&rft.pages=1323-1331&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2009.01.022&rft_dat=%3Cproquest_cross%3E2734584101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033195417&rft_id=info:pmid/19615856&rft_els_id=1_s2_0_S0895435609000626&rfr_iscdi=true