Nonparametric analysis of ordinal data in designed factorial experiments
ABSTRACT Plant disease severity often is assessed using an ordinal rating scale rather than a continuous scale of measurement. Although such data usually should be analyzed with nonparametric methods, and not with the typical parametric techniques (such as analysis of variance), limitations in the s...
Gespeichert in:
Veröffentlicht in: | Phytopathology 2004, Vol.94 (1), p.33-43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Phytopathology |
container_volume | 94 |
creator | SHAH, D. A MADDEN, L. V |
description | ABSTRACT Plant disease severity often is assessed using an ordinal rating scale rather than a continuous scale of measurement. Although such data usually should be analyzed with nonparametric methods, and not with the typical parametric techniques (such as analysis of variance), limitations in the statistical methodology available had meant that experimental designs generally could not be more complicated than a one-way layout. Very recent advancements in the theoretical formulation of hypotheses and associated test statistics within a nonparametric framework, together with development of software for implementing the methods, have made it possible for plant pathologists to analyze properly ordinal data from more complicated designs using nonparametric techniques. In this paper, we illustrate the nonparametric analysis of ordinal data obtained from two-way factorial designs, including a repeated measures design, and show how to quantify the effects of experimental factors on ratings through estimated relative marginal effects. |
doi_str_mv | 10.1094/PHYTO.2004.94.1.33 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733748211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733748211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-69dc9b87c178a0e9cff8d7775e19dcd86b08ef40328ada8ad8ec3dc598a39d533</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMotla_gAdZBPG0a_5tkxylqBWK9VBBT2GaZCVlu1uTXbDf3tQWBA_D8JjfPGYeQpcEFwQrfvc6_VjMC4oxLxQvSMHYERoSxVkuxpIfoyHGjOSKq_cBOotxhTEWshyfogGRiZJEDNH0pW02EGDtuuBNBg3U2-hj1lZZG6xPMrPQQeabzLroPxtnswpM1wafRu5744Jfu6aL5-ikgjq6i0MfobfHh8Vkms_mT8-T-1luWCm6fKysUUspDBESsFOmqqQVQpSOpImV4yWWruKYUQkWUklnmDWlksCULRkbodu97ya0X72LnV77aFxdQ-PaPmrBmOCSEpLI63_kqu1D-ihqygjlhGKaILqHTGhjDK7Sm_QQhK0mWO9S1r8p613KOimi2e6Gq4Nzv1w7-7dyiDUBNwcAooG6CtAYH_-4sqRUScJ-AFD7hhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231241202</pqid></control><display><type>article</type><title>Nonparametric analysis of ordinal data in designed factorial experiments</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>American Phytopathological Society Journal Back Issues</source><creator>SHAH, D. A ; MADDEN, L. V</creator><creatorcontrib>SHAH, D. A ; MADDEN, L. V</creatorcontrib><description>ABSTRACT Plant disease severity often is assessed using an ordinal rating scale rather than a continuous scale of measurement. Although such data usually should be analyzed with nonparametric methods, and not with the typical parametric techniques (such as analysis of variance), limitations in the statistical methodology available had meant that experimental designs generally could not be more complicated than a one-way layout. Very recent advancements in the theoretical formulation of hypotheses and associated test statistics within a nonparametric framework, together with development of software for implementing the methods, have made it possible for plant pathologists to analyze properly ordinal data from more complicated designs using nonparametric techniques. In this paper, we illustrate the nonparametric analysis of ordinal data obtained from two-way factorial designs, including a repeated measures design, and show how to quantify the effects of experimental factors on ratings through estimated relative marginal effects.</description><identifier>ISSN: 0031-949X</identifier><identifier>EISSN: 1943-7684</identifier><identifier>DOI: 10.1094/PHYTO.2004.94.1.33</identifier><identifier>PMID: 18943817</identifier><identifier>CODEN: PHYTAJ</identifier><language>eng</language><publisher>St. Paul, MN: American Phytopathological Society</publisher><subject>Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Phytopathology. Animal pests. Plant and forest protection</subject><ispartof>Phytopathology, 2004, Vol.94 (1), p.33-43</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Phytopathological Society Jan 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-69dc9b87c178a0e9cff8d7775e19dcd86b08ef40328ada8ad8ec3dc598a39d533</citedby><cites>FETCH-LOGICAL-c357t-69dc9b87c178a0e9cff8d7775e19dcd86b08ef40328ada8ad8ec3dc598a39d533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3725,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15522981$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18943817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SHAH, D. A</creatorcontrib><creatorcontrib>MADDEN, L. V</creatorcontrib><title>Nonparametric analysis of ordinal data in designed factorial experiments</title><title>Phytopathology</title><addtitle>Phytopathology</addtitle><description>ABSTRACT Plant disease severity often is assessed using an ordinal rating scale rather than a continuous scale of measurement. Although such data usually should be analyzed with nonparametric methods, and not with the typical parametric techniques (such as analysis of variance), limitations in the statistical methodology available had meant that experimental designs generally could not be more complicated than a one-way layout. Very recent advancements in the theoretical formulation of hypotheses and associated test statistics within a nonparametric framework, together with development of software for implementing the methods, have made it possible for plant pathologists to analyze properly ordinal data from more complicated designs using nonparametric techniques. In this paper, we illustrate the nonparametric analysis of ordinal data obtained from two-way factorial designs, including a repeated measures design, and show how to quantify the effects of experimental factors on ratings through estimated relative marginal effects.</description><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><issn>0031-949X</issn><issn>1943-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE9LAzEQxYMotla_gAdZBPG0a_5tkxylqBWK9VBBT2GaZCVlu1uTXbDf3tQWBA_D8JjfPGYeQpcEFwQrfvc6_VjMC4oxLxQvSMHYERoSxVkuxpIfoyHGjOSKq_cBOotxhTEWshyfogGRiZJEDNH0pW02EGDtuuBNBg3U2-hj1lZZG6xPMrPQQeabzLroPxtnswpM1wafRu5744Jfu6aL5-ikgjq6i0MfobfHh8Vkms_mT8-T-1luWCm6fKysUUspDBESsFOmqqQVQpSOpImV4yWWruKYUQkWUklnmDWlksCULRkbodu97ya0X72LnV77aFxdQ-PaPmrBmOCSEpLI63_kqu1D-ihqygjlhGKaILqHTGhjDK7Sm_QQhK0mWO9S1r8p613KOimi2e6Gq4Nzv1w7-7dyiDUBNwcAooG6CtAYH_-4sqRUScJ-AFD7hhY</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>SHAH, D. A</creator><creator>MADDEN, L. V</creator><general>American Phytopathological Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Nonparametric analysis of ordinal data in designed factorial experiments</title><author>SHAH, D. A ; MADDEN, L. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-69dc9b87c178a0e9cff8d7775e19dcd86b08ef40328ada8ad8ec3dc598a39d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHAH, D. A</creatorcontrib><creatorcontrib>MADDEN, L. V</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHAH, D. A</au><au>MADDEN, L. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric analysis of ordinal data in designed factorial experiments</atitle><jtitle>Phytopathology</jtitle><addtitle>Phytopathology</addtitle><date>2004</date><risdate>2004</risdate><volume>94</volume><issue>1</issue><spage>33</spage><epage>43</epage><pages>33-43</pages><issn>0031-949X</issn><eissn>1943-7684</eissn><coden>PHYTAJ</coden><abstract>ABSTRACT Plant disease severity often is assessed using an ordinal rating scale rather than a continuous scale of measurement. Although such data usually should be analyzed with nonparametric methods, and not with the typical parametric techniques (such as analysis of variance), limitations in the statistical methodology available had meant that experimental designs generally could not be more complicated than a one-way layout. Very recent advancements in the theoretical formulation of hypotheses and associated test statistics within a nonparametric framework, together with development of software for implementing the methods, have made it possible for plant pathologists to analyze properly ordinal data from more complicated designs using nonparametric techniques. In this paper, we illustrate the nonparametric analysis of ordinal data obtained from two-way factorial designs, including a repeated measures design, and show how to quantify the effects of experimental factors on ratings through estimated relative marginal effects.</abstract><cop>St. Paul, MN</cop><pub>American Phytopathological Society</pub><pmid>18943817</pmid><doi>10.1094/PHYTO.2004.94.1.33</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-949X |
ispartof | Phytopathology, 2004, Vol.94 (1), p.33-43 |
issn | 0031-949X 1943-7684 |
language | eng |
recordid | cdi_proquest_miscellaneous_733748211 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; American Phytopathological Society Journal Back Issues |
subjects | Biological and medical sciences Fundamental and applied biological sciences. Psychology Phytopathology. Animal pests. Plant and forest protection |
title | Nonparametric analysis of ordinal data in designed factorial experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20analysis%20of%20ordinal%20data%20in%20designed%20factorial%20experiments&rft.jtitle=Phytopathology&rft.au=SHAH,%20D.%20A&rft.date=2004&rft.volume=94&rft.issue=1&rft.spage=33&rft.epage=43&rft.pages=33-43&rft.issn=0031-949X&rft.eissn=1943-7684&rft.coden=PHYTAJ&rft_id=info:doi/10.1094/PHYTO.2004.94.1.33&rft_dat=%3Cproquest_cross%3E733748211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231241202&rft_id=info:pmid/18943817&rfr_iscdi=true |