Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: Effect of experimental conditions and a comparison with other enhancement strategies

The objectives of the study were (i) to investigate the effect of experimental parameters on the iontophoretic transport of granisetron, (ii) to identify the relative contributions of electromigration (EM) and electroosmosis (EO), (iii) to determine the feasibility of delivering therapeutic amounts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutical sciences 2010-03, Vol.39 (5), p.387-393
Hauptverfasser: Cázares-Delgadillo, Jennyfer, Ganem-Rondero, Adriana, Quintanar-Guerrero, David, López-Castellano, Alicia C., Merino, Virginia, Kalia, Yogeshvar N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 5
container_start_page 387
container_title European journal of pharmaceutical sciences
container_volume 39
creator Cázares-Delgadillo, Jennyfer
Ganem-Rondero, Adriana
Quintanar-Guerrero, David
López-Castellano, Alicia C.
Merino, Virginia
Kalia, Yogeshvar N.
description The objectives of the study were (i) to investigate the effect of experimental parameters on the iontophoretic transport of granisetron, (ii) to identify the relative contributions of electromigration (EM) and electroosmosis (EO), (iii) to determine the feasibility of delivering therapeutic amounts of drug for the treatment of chemotherapy-induced nausea and vomiting and (iv) to test the in vitro results in a simple animal model in vivo. Preliminary in vitro studies using aqueous granisetron formulations investigating the effect of drug concentration (5, 10, 20 and 40 mM) and current density (0.1, 0.2, 0.3 mA cm −2) were performed using porcine ear skin. As expected, cumulative delivery in vitro at the 20 and 40 mM concentrations was significantly greater than that at 5 and 10 mM, which were not statistically different ( p < 0.05). Increasing the applied current density from 0.1 to 0.3 mA cm −2 resulted in a ∼4.2-fold increase in iontophoretic flux. Furthermore, in the absence of Na + in the formulation, no dependence of iontophoretic flux on drug concentration was reported (at a granisetron concentration of 40 mM, the transport rate was 2.93 ± 0.62 μg cm −2 min −1). Co-iontophoresis of acetaminophen was used to show that EM was the predominant transport mechanism accounting for 71–86% of total granisetron delivery. In vivo studies in Wistar rats (40 mM granisetron; application of 0.3 mA cm −2 for 5 h with Ag/AgCl electrodes and salt bridges) showed an average iontophoretic input rate ( k input ) of 0.83 ± 0.26 μg min −1 and a maximum plasma concentration ( C max ) of 0.092 ± 0.004 μg ml −1. Based on these results and given the known pharmacokinetics, transdermal iontophoresis could achieve therapeutic drug levels for the management of chemotherapy-induced emesis using a reasonably sized (4–6 cm 2) patch.
doi_str_mv 10.1016/j.ejps.2010.01.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733711139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928098710000321</els_id><sourcerecordid>733711139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-736ba31cce47d5788ca90098936e2dc4b09e62fb89c72b2623bfc07ed18b9e053</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EoiHwAhyQL4jTBtubXduIS1W1gFSJCz1bXu9s4rBrLx4n0Cfj9eo0AW6cLM_85t_3EfKasxVnvH2_W8FuxpVgJcD4ijH1hCy4krpiUrCnZMG0UBXTSl6QF4g7xlirJHtOLgRjuq2b9YL8vkMfNjQnG7CHNNmR-hhynLcxAXqkOVIfXAKLQDeF8gg5xUB7GP0B0j21LkVEit99KCQ9-JKmNvSnzyF-oNfDAC7TOFD4NUPyE4Rc5rgYep_LNHzEbQlMs00eS_efPm9pzFtIFMLWBgfHIoplzwwbD_iSPBvsiPDq_C7J3c31t6vP1e3XT1-uLm8rV6smV7JuO1tz52At-0Yq5awutytdtyB6t-6YhlYMndJOik60ou4GxyT0XHUaWFMvybtT3znFH3vAbCaPDsbRBoh7NLKuJee81oUUJ_JRjwSDmcupNt0bzszRL7MzR7_M0S_DuCl-laI35_b7boL-b8kfgwrw9gxYdHYcigPO4z9ONKrRZe0l-XjioIhx8JAMOg9Ft96nIr7po__fHg_dl7lb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733711139</pqid></control><display><type>article</type><title>Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: Effect of experimental conditions and a comparison with other enhancement strategies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cázares-Delgadillo, Jennyfer ; Ganem-Rondero, Adriana ; Quintanar-Guerrero, David ; López-Castellano, Alicia C. ; Merino, Virginia ; Kalia, Yogeshvar N.</creator><creatorcontrib>Cázares-Delgadillo, Jennyfer ; Ganem-Rondero, Adriana ; Quintanar-Guerrero, David ; López-Castellano, Alicia C. ; Merino, Virginia ; Kalia, Yogeshvar N.</creatorcontrib><description>The objectives of the study were (i) to investigate the effect of experimental parameters on the iontophoretic transport of granisetron, (ii) to identify the relative contributions of electromigration (EM) and electroosmosis (EO), (iii) to determine the feasibility of delivering therapeutic amounts of drug for the treatment of chemotherapy-induced nausea and vomiting and (iv) to test the in vitro results in a simple animal model in vivo. Preliminary in vitro studies using aqueous granisetron formulations investigating the effect of drug concentration (5, 10, 20 and 40 mM) and current density (0.1, 0.2, 0.3 mA cm −2) were performed using porcine ear skin. As expected, cumulative delivery in vitro at the 20 and 40 mM concentrations was significantly greater than that at 5 and 10 mM, which were not statistically different ( p &lt; 0.05). Increasing the applied current density from 0.1 to 0.3 mA cm −2 resulted in a ∼4.2-fold increase in iontophoretic flux. Furthermore, in the absence of Na + in the formulation, no dependence of iontophoretic flux on drug concentration was reported (at a granisetron concentration of 40 mM, the transport rate was 2.93 ± 0.62 μg cm −2 min −1). Co-iontophoresis of acetaminophen was used to show that EM was the predominant transport mechanism accounting for 71–86% of total granisetron delivery. In vivo studies in Wistar rats (40 mM granisetron; application of 0.3 mA cm −2 for 5 h with Ag/AgCl electrodes and salt bridges) showed an average iontophoretic input rate ( k input ) of 0.83 ± 0.26 μg min −1 and a maximum plasma concentration ( C max ) of 0.092 ± 0.004 μg ml −1. Based on these results and given the known pharmacokinetics, transdermal iontophoresis could achieve therapeutic drug levels for the management of chemotherapy-induced emesis using a reasonably sized (4–6 cm 2) patch.</description><identifier>ISSN: 0928-0987</identifier><identifier>EISSN: 1879-0720</identifier><identifier>DOI: 10.1016/j.ejps.2010.01.008</identifier><identifier>PMID: 20096354</identifier><language>eng</language><publisher>Kindlington: Elsevier B.V</publisher><subject>Administration, Cutaneous ; Animals ; Antiemetics - administration &amp; dosage ; Antiemetics - pharmacokinetics ; Area Under Curve ; Biological and medical sciences ; Chromatography, High Pressure Liquid ; Electromigration ; Electroosmosis ; General pharmacology ; Granisetron ; Granisetron - administration &amp; dosage ; Granisetron - pharmacokinetics ; Half-Life ; In Vitro Techniques ; Iontophoresis ; Iontophoresis - methods ; Limit of Detection ; Male ; Medical sciences ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Rats ; Rats, Wistar ; Serotonin Antagonists - administration &amp; dosage ; Serotonin Antagonists - pharmacokinetics ; Skin - metabolism ; Swine ; Transdermal</subject><ispartof>European journal of pharmaceutical sciences, 2010-03, Vol.39 (5), p.387-393</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-736ba31cce47d5788ca90098936e2dc4b09e62fb89c72b2623bfc07ed18b9e053</citedby><cites>FETCH-LOGICAL-c385t-736ba31cce47d5788ca90098936e2dc4b09e62fb89c72b2623bfc07ed18b9e053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928098710000321$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22585962$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20096354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cázares-Delgadillo, Jennyfer</creatorcontrib><creatorcontrib>Ganem-Rondero, Adriana</creatorcontrib><creatorcontrib>Quintanar-Guerrero, David</creatorcontrib><creatorcontrib>López-Castellano, Alicia C.</creatorcontrib><creatorcontrib>Merino, Virginia</creatorcontrib><creatorcontrib>Kalia, Yogeshvar N.</creatorcontrib><title>Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: Effect of experimental conditions and a comparison with other enhancement strategies</title><title>European journal of pharmaceutical sciences</title><addtitle>Eur J Pharm Sci</addtitle><description>The objectives of the study were (i) to investigate the effect of experimental parameters on the iontophoretic transport of granisetron, (ii) to identify the relative contributions of electromigration (EM) and electroosmosis (EO), (iii) to determine the feasibility of delivering therapeutic amounts of drug for the treatment of chemotherapy-induced nausea and vomiting and (iv) to test the in vitro results in a simple animal model in vivo. Preliminary in vitro studies using aqueous granisetron formulations investigating the effect of drug concentration (5, 10, 20 and 40 mM) and current density (0.1, 0.2, 0.3 mA cm −2) were performed using porcine ear skin. As expected, cumulative delivery in vitro at the 20 and 40 mM concentrations was significantly greater than that at 5 and 10 mM, which were not statistically different ( p &lt; 0.05). Increasing the applied current density from 0.1 to 0.3 mA cm −2 resulted in a ∼4.2-fold increase in iontophoretic flux. Furthermore, in the absence of Na + in the formulation, no dependence of iontophoretic flux on drug concentration was reported (at a granisetron concentration of 40 mM, the transport rate was 2.93 ± 0.62 μg cm −2 min −1). Co-iontophoresis of acetaminophen was used to show that EM was the predominant transport mechanism accounting for 71–86% of total granisetron delivery. In vivo studies in Wistar rats (40 mM granisetron; application of 0.3 mA cm −2 for 5 h with Ag/AgCl electrodes and salt bridges) showed an average iontophoretic input rate ( k input ) of 0.83 ± 0.26 μg min −1 and a maximum plasma concentration ( C max ) of 0.092 ± 0.004 μg ml −1. Based on these results and given the known pharmacokinetics, transdermal iontophoresis could achieve therapeutic drug levels for the management of chemotherapy-induced emesis using a reasonably sized (4–6 cm 2) patch.</description><subject>Administration, Cutaneous</subject><subject>Animals</subject><subject>Antiemetics - administration &amp; dosage</subject><subject>Antiemetics - pharmacokinetics</subject><subject>Area Under Curve</subject><subject>Biological and medical sciences</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Electromigration</subject><subject>Electroosmosis</subject><subject>General pharmacology</subject><subject>Granisetron</subject><subject>Granisetron - administration &amp; dosage</subject><subject>Granisetron - pharmacokinetics</subject><subject>Half-Life</subject><subject>In Vitro Techniques</subject><subject>Iontophoresis</subject><subject>Iontophoresis - methods</subject><subject>Limit of Detection</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Serotonin Antagonists - administration &amp; dosage</subject><subject>Serotonin Antagonists - pharmacokinetics</subject><subject>Skin - metabolism</subject><subject>Swine</subject><subject>Transdermal</subject><issn>0928-0987</issn><issn>1879-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQxi0EoiHwAhyQL4jTBtubXduIS1W1gFSJCz1bXu9s4rBrLx4n0Cfj9eo0AW6cLM_85t_3EfKasxVnvH2_W8FuxpVgJcD4ijH1hCy4krpiUrCnZMG0UBXTSl6QF4g7xlirJHtOLgRjuq2b9YL8vkMfNjQnG7CHNNmR-hhynLcxAXqkOVIfXAKLQDeF8gg5xUB7GP0B0j21LkVEit99KCQ9-JKmNvSnzyF-oNfDAC7TOFD4NUPyE4Rc5rgYep_LNHzEbQlMs00eS_efPm9pzFtIFMLWBgfHIoplzwwbD_iSPBvsiPDq_C7J3c31t6vP1e3XT1-uLm8rV6smV7JuO1tz52At-0Yq5awutytdtyB6t-6YhlYMndJOik60ou4GxyT0XHUaWFMvybtT3znFH3vAbCaPDsbRBoh7NLKuJee81oUUJ_JRjwSDmcupNt0bzszRL7MzR7_M0S_DuCl-laI35_b7boL-b8kfgwrw9gxYdHYcigPO4z9ONKrRZe0l-XjioIhx8JAMOg9Ft96nIr7po__fHg_dl7lb</recordid><startdate>20100318</startdate><enddate>20100318</enddate><creator>Cázares-Delgadillo, Jennyfer</creator><creator>Ganem-Rondero, Adriana</creator><creator>Quintanar-Guerrero, David</creator><creator>López-Castellano, Alicia C.</creator><creator>Merino, Virginia</creator><creator>Kalia, Yogeshvar N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100318</creationdate><title>Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: Effect of experimental conditions and a comparison with other enhancement strategies</title><author>Cázares-Delgadillo, Jennyfer ; Ganem-Rondero, Adriana ; Quintanar-Guerrero, David ; López-Castellano, Alicia C. ; Merino, Virginia ; Kalia, Yogeshvar N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-736ba31cce47d5788ca90098936e2dc4b09e62fb89c72b2623bfc07ed18b9e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Administration, Cutaneous</topic><topic>Animals</topic><topic>Antiemetics - administration &amp; dosage</topic><topic>Antiemetics - pharmacokinetics</topic><topic>Area Under Curve</topic><topic>Biological and medical sciences</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Electromigration</topic><topic>Electroosmosis</topic><topic>General pharmacology</topic><topic>Granisetron</topic><topic>Granisetron - administration &amp; dosage</topic><topic>Granisetron - pharmacokinetics</topic><topic>Half-Life</topic><topic>In Vitro Techniques</topic><topic>Iontophoresis</topic><topic>Iontophoresis - methods</topic><topic>Limit of Detection</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Serotonin Antagonists - administration &amp; dosage</topic><topic>Serotonin Antagonists - pharmacokinetics</topic><topic>Skin - metabolism</topic><topic>Swine</topic><topic>Transdermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cázares-Delgadillo, Jennyfer</creatorcontrib><creatorcontrib>Ganem-Rondero, Adriana</creatorcontrib><creatorcontrib>Quintanar-Guerrero, David</creatorcontrib><creatorcontrib>López-Castellano, Alicia C.</creatorcontrib><creatorcontrib>Merino, Virginia</creatorcontrib><creatorcontrib>Kalia, Yogeshvar N.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cázares-Delgadillo, Jennyfer</au><au>Ganem-Rondero, Adriana</au><au>Quintanar-Guerrero, David</au><au>López-Castellano, Alicia C.</au><au>Merino, Virginia</au><au>Kalia, Yogeshvar N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: Effect of experimental conditions and a comparison with other enhancement strategies</atitle><jtitle>European journal of pharmaceutical sciences</jtitle><addtitle>Eur J Pharm Sci</addtitle><date>2010-03-18</date><risdate>2010</risdate><volume>39</volume><issue>5</issue><spage>387</spage><epage>393</epage><pages>387-393</pages><issn>0928-0987</issn><eissn>1879-0720</eissn><abstract>The objectives of the study were (i) to investigate the effect of experimental parameters on the iontophoretic transport of granisetron, (ii) to identify the relative contributions of electromigration (EM) and electroosmosis (EO), (iii) to determine the feasibility of delivering therapeutic amounts of drug for the treatment of chemotherapy-induced nausea and vomiting and (iv) to test the in vitro results in a simple animal model in vivo. Preliminary in vitro studies using aqueous granisetron formulations investigating the effect of drug concentration (5, 10, 20 and 40 mM) and current density (0.1, 0.2, 0.3 mA cm −2) were performed using porcine ear skin. As expected, cumulative delivery in vitro at the 20 and 40 mM concentrations was significantly greater than that at 5 and 10 mM, which were not statistically different ( p &lt; 0.05). Increasing the applied current density from 0.1 to 0.3 mA cm −2 resulted in a ∼4.2-fold increase in iontophoretic flux. Furthermore, in the absence of Na + in the formulation, no dependence of iontophoretic flux on drug concentration was reported (at a granisetron concentration of 40 mM, the transport rate was 2.93 ± 0.62 μg cm −2 min −1). Co-iontophoresis of acetaminophen was used to show that EM was the predominant transport mechanism accounting for 71–86% of total granisetron delivery. In vivo studies in Wistar rats (40 mM granisetron; application of 0.3 mA cm −2 for 5 h with Ag/AgCl electrodes and salt bridges) showed an average iontophoretic input rate ( k input ) of 0.83 ± 0.26 μg min −1 and a maximum plasma concentration ( C max ) of 0.092 ± 0.004 μg ml −1. Based on these results and given the known pharmacokinetics, transdermal iontophoresis could achieve therapeutic drug levels for the management of chemotherapy-induced emesis using a reasonably sized (4–6 cm 2) patch.</abstract><cop>Kindlington</cop><pub>Elsevier B.V</pub><pmid>20096354</pmid><doi>10.1016/j.ejps.2010.01.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0987
ispartof European journal of pharmaceutical sciences, 2010-03, Vol.39 (5), p.387-393
issn 0928-0987
1879-0720
language eng
recordid cdi_proquest_miscellaneous_733711139
source MEDLINE; Elsevier ScienceDirect Journals
subjects Administration, Cutaneous
Animals
Antiemetics - administration & dosage
Antiemetics - pharmacokinetics
Area Under Curve
Biological and medical sciences
Chromatography, High Pressure Liquid
Electromigration
Electroosmosis
General pharmacology
Granisetron
Granisetron - administration & dosage
Granisetron - pharmacokinetics
Half-Life
In Vitro Techniques
Iontophoresis
Iontophoresis - methods
Limit of Detection
Male
Medical sciences
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Rats
Rats, Wistar
Serotonin Antagonists - administration & dosage
Serotonin Antagonists - pharmacokinetics
Skin - metabolism
Swine
Transdermal
title Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: Effect of experimental conditions and a comparison with other enhancement strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20transdermal%20iontophoresis%20to%20increase%20granisetron%20delivery%20across%20skin%20in%20vitro%20and%20in%20vivo:%20Effect%20of%20experimental%20conditions%20and%20a%20comparison%20with%20other%20enhancement%20strategies&rft.jtitle=European%20journal%20of%20pharmaceutical%20sciences&rft.au=C%C3%A1zares-Delgadillo,%20Jennyfer&rft.date=2010-03-18&rft.volume=39&rft.issue=5&rft.spage=387&rft.epage=393&rft.pages=387-393&rft.issn=0928-0987&rft.eissn=1879-0720&rft_id=info:doi/10.1016/j.ejps.2010.01.008&rft_dat=%3Cproquest_cross%3E733711139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733711139&rft_id=info:pmid/20096354&rft_els_id=S0928098710000321&rfr_iscdi=true