Efficient computation of free energy of crystal phases due to external potentials by error-biased Bennett acceptance ratio method
Free energy of crystal phases is commonly evaluated by thermodynamic integration along a reversible path that involves an external potential. However, this method suffers from the hysteresis caused by the differences in the center of mass position of the crystal phase in the presence and absence of...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2010-02, Vol.132 (8), p.084101-084101-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084101-8 |
---|---|
container_issue | 8 |
container_start_page | 084101 |
container_title | The Journal of chemical physics |
container_volume | 132 |
creator | Apte, Pankaj A. |
description | Free energy of crystal phases is commonly evaluated by thermodynamic integration along a reversible path that involves an external potential. However, this method suffers from the hysteresis caused by the differences in the center of mass position of the crystal phase in the presence and absence of the external potential. To alleviate this hysteresis, a constraint on the translational degrees of freedom of the crystal phase is imposed along the path and subsequently a correction term is added to the free energy to account for such a constraint. The estimation of the correction term is often computationally expensive. In this work, we propose a new methodology, termed as error-biased Bennett acceptance ratio method, which effectively solves this problem without the need to impose any constraint. This method is simple to implement and it does not require any modification to the path. We show the applicability of this method in the computation of crystal-melt interfacial energy by cleaving wall method [
R. L. Davidchack
and
B. B. Laird
,
J. Chem. Phys.
118
,
7651
(
2003
)
] and bulk crystal-melt free energy difference by constrained fluid
λ
-integration method [
G. Grochola
,
J. Chem. Phys.
120
,
2122
(
2004
)
] for a model potential of silicon. |
doi_str_mv | 10.1063/1.3308622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733696534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733696534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-6ba702d75567b63314532355d98be213391527a756f4591db2b5ba363e0c16d23</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMo7rp68A9IbuKhmo8m3V4EXdYPWPCi55KkU7fSNjVJwR7957Z0XU-ehhmeeQbeQeickmtKJL-h15yTpWTsAM0pWaZRIlNyiOaEMBqlksgZOvH-gxBCExYfoxkjNGVsGc_R97ooSlNCE7CxddsFFUrbYFvgwgFgaMC992NrXO-DqnC7VR48zjvAwWL4CuCacWzD4ChV5bHuMThnXaTLAc3xPTQNhICVMdAG1RjAbryCawhbm5-io2JYg7NdXaC3h_Xr6inavDw-r-42keE8DZHUKiEsT4SQiZac01hwxoXI06UGRgeGCpaoRMgiFinNNdNCKy45EENlzvgCXU7e1tnPDnzI6tIbqCrVgO18lnAuUyl4PJBXE2mc9d5BkbWurJXrM0qyMfCMZrvAB_ZiZ-10Dfme_E14AG4nwJtyCvd_2_4X2d8v-A8it5EO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733696534</pqid></control><display><type>article</type><title>Efficient computation of free energy of crystal phases due to external potentials by error-biased Bennett acceptance ratio method</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Apte, Pankaj A.</creator><creatorcontrib>Apte, Pankaj A.</creatorcontrib><description>Free energy of crystal phases is commonly evaluated by thermodynamic integration along a reversible path that involves an external potential. However, this method suffers from the hysteresis caused by the differences in the center of mass position of the crystal phase in the presence and absence of the external potential. To alleviate this hysteresis, a constraint on the translational degrees of freedom of the crystal phase is imposed along the path and subsequently a correction term is added to the free energy to account for such a constraint. The estimation of the correction term is often computationally expensive. In this work, we propose a new methodology, termed as error-biased Bennett acceptance ratio method, which effectively solves this problem without the need to impose any constraint. This method is simple to implement and it does not require any modification to the path. We show the applicability of this method in the computation of crystal-melt interfacial energy by cleaving wall method [
R. L. Davidchack
and
B. B. Laird
,
J. Chem. Phys.
118
,
7651
(
2003
)
] and bulk crystal-melt free energy difference by constrained fluid
λ
-integration method [
G. Grochola
,
J. Chem. Phys.
120
,
2122
(
2004
)
] for a model potential of silicon.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3308622</identifier><identifier>PMID: 20192284</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2010-02, Vol.132 (8), p.084101-084101-8</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-6ba702d75567b63314532355d98be213391527a756f4591db2b5ba363e0c16d23</citedby><cites>FETCH-LOGICAL-c339t-6ba702d75567b63314532355d98be213391527a756f4591db2b5ba363e0c16d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20192284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Apte, Pankaj A.</creatorcontrib><title>Efficient computation of free energy of crystal phases due to external potentials by error-biased Bennett acceptance ratio method</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Free energy of crystal phases is commonly evaluated by thermodynamic integration along a reversible path that involves an external potential. However, this method suffers from the hysteresis caused by the differences in the center of mass position of the crystal phase in the presence and absence of the external potential. To alleviate this hysteresis, a constraint on the translational degrees of freedom of the crystal phase is imposed along the path and subsequently a correction term is added to the free energy to account for such a constraint. The estimation of the correction term is often computationally expensive. In this work, we propose a new methodology, termed as error-biased Bennett acceptance ratio method, which effectively solves this problem without the need to impose any constraint. This method is simple to implement and it does not require any modification to the path. We show the applicability of this method in the computation of crystal-melt interfacial energy by cleaving wall method [
R. L. Davidchack
and
B. B. Laird
,
J. Chem. Phys.
118
,
7651
(
2003
)
] and bulk crystal-melt free energy difference by constrained fluid
λ
-integration method [
G. Grochola
,
J. Chem. Phys.
120
,
2122
(
2004
)
] for a model potential of silicon.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoMo7rp68A9IbuKhmo8m3V4EXdYPWPCi55KkU7fSNjVJwR7957Z0XU-ehhmeeQbeQeickmtKJL-h15yTpWTsAM0pWaZRIlNyiOaEMBqlksgZOvH-gxBCExYfoxkjNGVsGc_R97ooSlNCE7CxddsFFUrbYFvgwgFgaMC992NrXO-DqnC7VR48zjvAwWL4CuCacWzD4ChV5bHuMThnXaTLAc3xPTQNhICVMdAG1RjAbryCawhbm5-io2JYg7NdXaC3h_Xr6inavDw-r-42keE8DZHUKiEsT4SQiZac01hwxoXI06UGRgeGCpaoRMgiFinNNdNCKy45EENlzvgCXU7e1tnPDnzI6tIbqCrVgO18lnAuUyl4PJBXE2mc9d5BkbWurJXrM0qyMfCMZrvAB_ZiZ-10Dfme_E14AG4nwJtyCvd_2_4X2d8v-A8it5EO</recordid><startdate>20100228</startdate><enddate>20100228</enddate><creator>Apte, Pankaj A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100228</creationdate><title>Efficient computation of free energy of crystal phases due to external potentials by error-biased Bennett acceptance ratio method</title><author>Apte, Pankaj A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-6ba702d75567b63314532355d98be213391527a756f4591db2b5ba363e0c16d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apte, Pankaj A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apte, Pankaj A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient computation of free energy of crystal phases due to external potentials by error-biased Bennett acceptance ratio method</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2010-02-28</date><risdate>2010</risdate><volume>132</volume><issue>8</issue><spage>084101</spage><epage>084101-8</epage><pages>084101-084101-8</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Free energy of crystal phases is commonly evaluated by thermodynamic integration along a reversible path that involves an external potential. However, this method suffers from the hysteresis caused by the differences in the center of mass position of the crystal phase in the presence and absence of the external potential. To alleviate this hysteresis, a constraint on the translational degrees of freedom of the crystal phase is imposed along the path and subsequently a correction term is added to the free energy to account for such a constraint. The estimation of the correction term is often computationally expensive. In this work, we propose a new methodology, termed as error-biased Bennett acceptance ratio method, which effectively solves this problem without the need to impose any constraint. This method is simple to implement and it does not require any modification to the path. We show the applicability of this method in the computation of crystal-melt interfacial energy by cleaving wall method [
R. L. Davidchack
and
B. B. Laird
,
J. Chem. Phys.
118
,
7651
(
2003
)
] and bulk crystal-melt free energy difference by constrained fluid
λ
-integration method [
G. Grochola
,
J. Chem. Phys.
120
,
2122
(
2004
)
] for a model potential of silicon.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>20192284</pmid><doi>10.1063/1.3308622</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2010-02, Vol.132 (8), p.084101-084101-8 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_733696534 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Efficient computation of free energy of crystal phases due to external potentials by error-biased Bennett acceptance ratio method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20computation%20of%20free%20energy%20of%20crystal%20phases%20due%20to%20external%20potentials%20by%20error-biased%20Bennett%20acceptance%20ratio%20method&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Apte,%20Pankaj%20A.&rft.date=2010-02-28&rft.volume=132&rft.issue=8&rft.spage=084101&rft.epage=084101-8&rft.pages=084101-084101-8&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3308622&rft_dat=%3Cproquest_cross%3E733696534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733696534&rft_id=info:pmid/20192284&rfr_iscdi=true |