miR-181a and miR-630 Regulate Cisplatin-Induced Cancer Cell Death
MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2010-03, Vol.70 (5), p.1793-1803 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1803 |
---|---|
container_issue | 5 |
container_start_page | 1793 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 70 |
creator | GALLUZZI, Lorenzo MORSELLI, Eugenia RIPOCHE, Hugues LAZAR, Vladimir HAREL-BELLAN, Annick DESSEN, Philippe BARILLOT, Emmanuel KROEMER, Guido VITALE, Ilio KEPP, Oliver SENOVILLA, Laura CRIOLLO, Alfredo SERVANT, Nicolas PACCARD, Caroline HUPE, Philippe ROBERT, Thomas |
description | MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC. |
doi_str_mv | 10.1158/0008-5472.can-09-3112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733690564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733690564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8efd5290870b8785fbbde875b77b30c76fa97bb69ada84f9ae4a88a2143e387f3</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEYmPwE0C9IE6BpEma5DiVr0kTSBOcIydNoKjtRrMe-Pek2hgn29Lz2taD0CUlt5QKdUcIUVhwmd866DDRmFGaH6EpFUxhybk4RtMDM0FnMX6lUVAiTtEkJ5QLKvIpmrf1ClNFIYOuysahYCRb-Y-hga3PyjpuUlN3eNFVg_NVVkLnfJ-Vvmmyew_bz3N0EqCJ_mJfZ-j98eGtfMbL16dFOV9il05tsfKhErkmShKrpBLB2sorKayUlhEniwBaWltoqEDxoMFzUApyyplnSgY2Qze7vZt-_T34uDVtHV16Azq_HqKRjBWaiIInUuxI169j7H0wm75uof8xlJhRnhnFmFGMKecvhmgzyku5q_2Fwba-OqT-bCXgeg9AdNCEPrmo4z-Xc1UQqdkvSMN1AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733690564</pqid></control><display><type>article</type><title>miR-181a and miR-630 Regulate Cisplatin-Induced Cancer Cell Death</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>GALLUZZI, Lorenzo ; MORSELLI, Eugenia ; RIPOCHE, Hugues ; LAZAR, Vladimir ; HAREL-BELLAN, Annick ; DESSEN, Philippe ; BARILLOT, Emmanuel ; KROEMER, Guido ; VITALE, Ilio ; KEPP, Oliver ; SENOVILLA, Laura ; CRIOLLO, Alfredo ; SERVANT, Nicolas ; PACCARD, Caroline ; HUPE, Philippe ; ROBERT, Thomas</creator><creatorcontrib>GALLUZZI, Lorenzo ; MORSELLI, Eugenia ; RIPOCHE, Hugues ; LAZAR, Vladimir ; HAREL-BELLAN, Annick ; DESSEN, Philippe ; BARILLOT, Emmanuel ; KROEMER, Guido ; VITALE, Ilio ; KEPP, Oliver ; SENOVILLA, Laura ; CRIOLLO, Alfredo ; SERVANT, Nicolas ; PACCARD, Caroline ; HUPE, Philippe ; ROBERT, Thomas</creatorcontrib><description>MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-09-3112</identifier><identifier>PMID: 20145152</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Antineoplastic agents ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Apoptosis - genetics ; bcl-2-Associated X Protein - metabolism ; Biological and medical sciences ; Cadmium Chloride - pharmacology ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - genetics ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Caspases - metabolism ; Cell Cycle - drug effects ; Cell Cycle - genetics ; Cell Line, Tumor ; Cisplatin - pharmacology ; DNA Damage ; HeLa Cells ; Humans ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Medical sciences ; MicroRNAs - genetics ; MicroRNAs - metabolism ; MicroRNAs - physiology ; Oligonucleotide Array Sequence Analysis - methods ; Pharmacology. Drug treatments ; Phosphorylation ; Sphingosine - analogs & derivatives ; Sphingosine - pharmacology ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumors ; Up-Regulation - drug effects</subject><ispartof>Cancer research (Chicago, Ill.), 2010-03, Vol.70 (5), p.1793-1803</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8efd5290870b8785fbbde875b77b30c76fa97bb69ada84f9ae4a88a2143e387f3</citedby><cites>FETCH-LOGICAL-c451t-8efd5290870b8785fbbde875b77b30c76fa97bb69ada84f9ae4a88a2143e387f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22486079$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20145152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>GALLUZZI, Lorenzo</creatorcontrib><creatorcontrib>MORSELLI, Eugenia</creatorcontrib><creatorcontrib>RIPOCHE, Hugues</creatorcontrib><creatorcontrib>LAZAR, Vladimir</creatorcontrib><creatorcontrib>HAREL-BELLAN, Annick</creatorcontrib><creatorcontrib>DESSEN, Philippe</creatorcontrib><creatorcontrib>BARILLOT, Emmanuel</creatorcontrib><creatorcontrib>KROEMER, Guido</creatorcontrib><creatorcontrib>VITALE, Ilio</creatorcontrib><creatorcontrib>KEPP, Oliver</creatorcontrib><creatorcontrib>SENOVILLA, Laura</creatorcontrib><creatorcontrib>CRIOLLO, Alfredo</creatorcontrib><creatorcontrib>SERVANT, Nicolas</creatorcontrib><creatorcontrib>PACCARD, Caroline</creatorcontrib><creatorcontrib>HUPE, Philippe</creatorcontrib><creatorcontrib>ROBERT, Thomas</creatorcontrib><title>miR-181a and miR-630 Regulate Cisplatin-Induced Cancer Cell Death</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.</description><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cadmium Chloride - pharmacology</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Caspases - metabolism</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Cycle - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cisplatin - pharmacology</subject><subject>DNA Damage</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical sciences</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>MicroRNAs - physiology</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pharmacology. Drug treatments</subject><subject>Phosphorylation</subject><subject>Sphingosine - analogs & derivatives</subject><subject>Sphingosine - pharmacology</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><subject>Up-Regulation - drug effects</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1PwzAMhiMEYmPwE0C9IE6BpEma5DiVr0kTSBOcIydNoKjtRrMe-Pek2hgn29Lz2taD0CUlt5QKdUcIUVhwmd866DDRmFGaH6EpFUxhybk4RtMDM0FnMX6lUVAiTtEkJ5QLKvIpmrf1ClNFIYOuysahYCRb-Y-hga3PyjpuUlN3eNFVg_NVVkLnfJ-Vvmmyew_bz3N0EqCJ_mJfZ-j98eGtfMbL16dFOV9il05tsfKhErkmShKrpBLB2sorKayUlhEniwBaWltoqEDxoMFzUApyyplnSgY2Qze7vZt-_T34uDVtHV16Azq_HqKRjBWaiIInUuxI169j7H0wm75uof8xlJhRnhnFmFGMKecvhmgzyku5q_2Fwba-OqT-bCXgeg9AdNCEPrmo4z-Xc1UQqdkvSMN1AQ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>GALLUZZI, Lorenzo</creator><creator>MORSELLI, Eugenia</creator><creator>RIPOCHE, Hugues</creator><creator>LAZAR, Vladimir</creator><creator>HAREL-BELLAN, Annick</creator><creator>DESSEN, Philippe</creator><creator>BARILLOT, Emmanuel</creator><creator>KROEMER, Guido</creator><creator>VITALE, Ilio</creator><creator>KEPP, Oliver</creator><creator>SENOVILLA, Laura</creator><creator>CRIOLLO, Alfredo</creator><creator>SERVANT, Nicolas</creator><creator>PACCARD, Caroline</creator><creator>HUPE, Philippe</creator><creator>ROBERT, Thomas</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>miR-181a and miR-630 Regulate Cisplatin-Induced Cancer Cell Death</title><author>GALLUZZI, Lorenzo ; MORSELLI, Eugenia ; RIPOCHE, Hugues ; LAZAR, Vladimir ; HAREL-BELLAN, Annick ; DESSEN, Philippe ; BARILLOT, Emmanuel ; KROEMER, Guido ; VITALE, Ilio ; KEPP, Oliver ; SENOVILLA, Laura ; CRIOLLO, Alfredo ; SERVANT, Nicolas ; PACCARD, Caroline ; HUPE, Philippe ; ROBERT, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8efd5290870b8785fbbde875b77b30c76fa97bb69ada84f9ae4a88a2143e387f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cadmium Chloride - pharmacology</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Caspases - metabolism</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Cycle - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cisplatin - pharmacology</topic><topic>DNA Damage</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical sciences</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>MicroRNAs - physiology</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pharmacology. Drug treatments</topic><topic>Phosphorylation</topic><topic>Sphingosine - analogs & derivatives</topic><topic>Sphingosine - pharmacology</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><topic>Up-Regulation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GALLUZZI, Lorenzo</creatorcontrib><creatorcontrib>MORSELLI, Eugenia</creatorcontrib><creatorcontrib>RIPOCHE, Hugues</creatorcontrib><creatorcontrib>LAZAR, Vladimir</creatorcontrib><creatorcontrib>HAREL-BELLAN, Annick</creatorcontrib><creatorcontrib>DESSEN, Philippe</creatorcontrib><creatorcontrib>BARILLOT, Emmanuel</creatorcontrib><creatorcontrib>KROEMER, Guido</creatorcontrib><creatorcontrib>VITALE, Ilio</creatorcontrib><creatorcontrib>KEPP, Oliver</creatorcontrib><creatorcontrib>SENOVILLA, Laura</creatorcontrib><creatorcontrib>CRIOLLO, Alfredo</creatorcontrib><creatorcontrib>SERVANT, Nicolas</creatorcontrib><creatorcontrib>PACCARD, Caroline</creatorcontrib><creatorcontrib>HUPE, Philippe</creatorcontrib><creatorcontrib>ROBERT, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GALLUZZI, Lorenzo</au><au>MORSELLI, Eugenia</au><au>RIPOCHE, Hugues</au><au>LAZAR, Vladimir</au><au>HAREL-BELLAN, Annick</au><au>DESSEN, Philippe</au><au>BARILLOT, Emmanuel</au><au>KROEMER, Guido</au><au>VITALE, Ilio</au><au>KEPP, Oliver</au><au>SENOVILLA, Laura</au><au>CRIOLLO, Alfredo</au><au>SERVANT, Nicolas</au><au>PACCARD, Caroline</au><au>HUPE, Philippe</au><au>ROBERT, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-181a and miR-630 Regulate Cisplatin-Induced Cancer Cell Death</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>70</volume><issue>5</issue><spage>1793</spage><epage>1803</epage><pages>1793-1803</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>20145152</pmid><doi>10.1158/0008-5472.can-09-3112</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2010-03, Vol.70 (5), p.1793-1803 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_proquest_miscellaneous_733690564 |
source | MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Antineoplastic agents Antineoplastic Agents - pharmacology Apoptosis - drug effects Apoptosis - genetics bcl-2-Associated X Protein - metabolism Biological and medical sciences Cadmium Chloride - pharmacology Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Caspases - metabolism Cell Cycle - drug effects Cell Cycle - genetics Cell Line, Tumor Cisplatin - pharmacology DNA Damage HeLa Cells Humans Lung Neoplasms - drug therapy Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - pathology Medical sciences MicroRNAs - genetics MicroRNAs - metabolism MicroRNAs - physiology Oligonucleotide Array Sequence Analysis - methods Pharmacology. Drug treatments Phosphorylation Sphingosine - analogs & derivatives Sphingosine - pharmacology Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumors Up-Regulation - drug effects |
title | miR-181a and miR-630 Regulate Cisplatin-Induced Cancer Cell Death |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-181a%20and%20miR-630%20Regulate%20Cisplatin-Induced%20Cancer%20Cell%20Death&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=GALLUZZI,%20Lorenzo&rft.date=2010-03-01&rft.volume=70&rft.issue=5&rft.spage=1793&rft.epage=1803&rft.pages=1793-1803&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-09-3112&rft_dat=%3Cproquest_cross%3E733690564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733690564&rft_id=info:pmid/20145152&rfr_iscdi=true |