The Nature of DNA-Base-Carbon-Nanotube Interactions

The interactions between DNA bases and carbon nanotubes (CNTs) govern the self‐assembly of DNA–CNT hybrids (see image), a novel class of nanomaterials with many applications in nanotechnology. The free‐energy calculations presented here reveal the importance of van der Waals and electrostatic intera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2010-01, Vol.6 (1), p.31-34
Hauptverfasser: Johnson, Robert R., Johnson, A. T. Charlie, Klein, Michael L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 31
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 6
creator Johnson, Robert R.
Johnson, A. T. Charlie
Klein, Michael L.
description The interactions between DNA bases and carbon nanotubes (CNTs) govern the self‐assembly of DNA–CNT hybrids (see image), a novel class of nanomaterials with many applications in nanotechnology. The free‐energy calculations presented here reveal the importance of van der Waals and electrostatic interactions, solvent‐mediated effects, and entropy in base–CNT binding and provide a better understanding of these hybrid nanomaterials.
doi_str_mv 10.1002/smll.200901481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733687154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733687154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-a65b02ac28cb0336ff21cb91f2fa41695c17bcbb91cbac8de01cb826cf9fa4fb3</originalsourceid><addsrcrecordid>eNqFkElPwzAQRi0EolC4ckS5cXLxkvVYArQVIQhRFnGxbNcWgSzFTgT997hKVbhxmtHofU-jD4ATjEYYIXJuq7IcEYQShP0Y74ADHGIKw5gku9sdowE4tPYdIYqJH-2DAU4Sn5KAHAA6f1NeztvOKK_R3mU-hhfcKphyI5oa5rxu2k4ob1a3ynDZFk1tj8Ce5qVVx5s5BI_XV_N0CrO7ySwdZ1D67hfIw0AgwiWJpUCUhloTLEWCNdHcx2ESSBwJKdxFCi7jhUJuiUkodeIALegQnPXepWk-O2VbVhVWqrLktWo6yyInjSMc-I4c9aQ0jbVGabY0RcXNimHE1j2xdU9s25MLnG7UnajU4hffFOOApAe-ilKt_tGxh9ss-yuHfbawrfreZrn5YGFEo4A95xN2c59OX19oxJ7oD8WVg2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733687154</pqid></control><display><type>article</type><title>The Nature of DNA-Base-Carbon-Nanotube Interactions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Johnson, Robert R. ; Johnson, A. T. Charlie ; Klein, Michael L.</creator><creatorcontrib>Johnson, Robert R. ; Johnson, A. T. Charlie ; Klein, Michael L.</creatorcontrib><description>The interactions between DNA bases and carbon nanotubes (CNTs) govern the self‐assembly of DNA–CNT hybrids (see image), a novel class of nanomaterials with many applications in nanotechnology. The free‐energy calculations presented here reveal the importance of van der Waals and electrostatic interactions, solvent‐mediated effects, and entropy in base–CNT binding and provide a better understanding of these hybrid nanomaterials.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200901481</identifier><identifier>PMID: 19943252</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>carbon nanotubes ; Computer Simulation ; DNA ; DNA - chemistry ; DNA - ultrastructure ; hybrid materials ; Materials Testing ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; molecular dynamics ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2010-01, Vol.6 (1), p.31-34</ispartof><rights>Copyright © 2010 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-a65b02ac28cb0336ff21cb91f2fa41695c17bcbb91cbac8de01cb826cf9fa4fb3</citedby><cites>FETCH-LOGICAL-c4481-a65b02ac28cb0336ff21cb91f2fa41695c17bcbb91cbac8de01cb826cf9fa4fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.200901481$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200901481$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19943252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Robert R.</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><title>The Nature of DNA-Base-Carbon-Nanotube Interactions</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The interactions between DNA bases and carbon nanotubes (CNTs) govern the self‐assembly of DNA–CNT hybrids (see image), a novel class of nanomaterials with many applications in nanotechnology. The free‐energy calculations presented here reveal the importance of van der Waals and electrostatic interactions, solvent‐mediated effects, and entropy in base–CNT binding and provide a better understanding of these hybrid nanomaterials.</description><subject>carbon nanotubes</subject><subject>Computer Simulation</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>hybrid materials</subject><subject>Materials Testing</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>molecular dynamics</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkElPwzAQRi0EolC4ckS5cXLxkvVYArQVIQhRFnGxbNcWgSzFTgT997hKVbhxmtHofU-jD4ATjEYYIXJuq7IcEYQShP0Y74ADHGIKw5gku9sdowE4tPYdIYqJH-2DAU4Sn5KAHAA6f1NeztvOKK_R3mU-hhfcKphyI5oa5rxu2k4ob1a3ynDZFk1tj8Ce5qVVx5s5BI_XV_N0CrO7ySwdZ1D67hfIw0AgwiWJpUCUhloTLEWCNdHcx2ESSBwJKdxFCi7jhUJuiUkodeIALegQnPXepWk-O2VbVhVWqrLktWo6yyInjSMc-I4c9aQ0jbVGabY0RcXNimHE1j2xdU9s25MLnG7UnajU4hffFOOApAe-ilKt_tGxh9ss-yuHfbawrfreZrn5YGFEo4A95xN2c59OX19oxJ7oD8WVg2I</recordid><startdate>20100104</startdate><enddate>20100104</enddate><creator>Johnson, Robert R.</creator><creator>Johnson, A. T. Charlie</creator><creator>Klein, Michael L.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100104</creationdate><title>The Nature of DNA-Base-Carbon-Nanotube Interactions</title><author>Johnson, Robert R. ; Johnson, A. T. Charlie ; Klein, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-a65b02ac28cb0336ff21cb91f2fa41695c17bcbb91cbac8de01cb826cf9fa4fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>carbon nanotubes</topic><topic>Computer Simulation</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>hybrid materials</topic><topic>Materials Testing</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>molecular dynamics</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Robert R.</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Robert R.</au><au>Johnson, A. T. Charlie</au><au>Klein, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nature of DNA-Base-Carbon-Nanotube Interactions</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2010-01-04</date><risdate>2010</risdate><volume>6</volume><issue>1</issue><spage>31</spage><epage>34</epage><pages>31-34</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The interactions between DNA bases and carbon nanotubes (CNTs) govern the self‐assembly of DNA–CNT hybrids (see image), a novel class of nanomaterials with many applications in nanotechnology. The free‐energy calculations presented here reveal the importance of van der Waals and electrostatic interactions, solvent‐mediated effects, and entropy in base–CNT binding and provide a better understanding of these hybrid nanomaterials.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>19943252</pmid><doi>10.1002/smll.200901481</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2010-01, Vol.6 (1), p.31-34
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_733687154
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects carbon nanotubes
Computer Simulation
DNA
DNA - chemistry
DNA - ultrastructure
hybrid materials
Materials Testing
Models, Chemical
Models, Molecular
Molecular Conformation
molecular dynamics
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
title The Nature of DNA-Base-Carbon-Nanotube Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nature%20of%20DNA-Base-Carbon-Nanotube%20Interactions&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Johnson,%20Robert%20R.&rft.date=2010-01-04&rft.volume=6&rft.issue=1&rft.spage=31&rft.epage=34&rft.pages=31-34&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200901481&rft_dat=%3Cproquest_cross%3E733687154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733687154&rft_id=info:pmid/19943252&rfr_iscdi=true