Hypoxia-induced hyperreactivity of pulmonary arteries: role of cyclooxygenase-2, isoprostanes, and thromboxane receptors
Aims This study investigates the role of the cyclooxygenase (COX)/prostanoid pathway in chronic hypoxia-induced hyperreactivity of pulmonary arteries. Methods and results Pulmonary arteries were removed from normoxic or hypoxic (0.5 atm for 21 days) mice and studied for protein expression/localizati...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2010-02, Vol.85 (3), p.582-592 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims This study investigates the role of the cyclooxygenase (COX)/prostanoid pathway in chronic hypoxia-induced hyperreactivity of pulmonary arteries. Methods and results Pulmonary arteries were removed from normoxic or hypoxic (0.5 atm for 21 days) mice and studied for protein expression/localization of COX-1, COX-2, and thromboxane A2 (TXA2)-synthase, release of TXA2, prostacyclin (PGI2) and the isoprostane 8-iso-prostaglandin F2α (8-iso-PGF2α), and vasomotor responses. COX-2 expression was increased in all layers of pulmonary arteries from hypoxic mice. In contrast, COX-1 expression was not significantly modified following chronic hypoxia, whereas TXA2-synthase was decreased. Chronic hypoxia differentially affected prostanoid release from pulmonary arteries: TXA2 secretion was not significantly modified; PGI2 secretion was decreased, whereas 8-iso-PGF2α secretion was increased. A selective COX-2 inhibitor decreased 8-iso-PGF2α release. Arachidonic acid elicited an endothelium- and COX-1-dependent relaxation in pulmonary arteries from normoxic mice. In contrast, arachidonic acid induced an endothelium-independent contraction in pulmonary arteries from hypoxic mice that was partially reduced by catalase, COX-1, COX-2, or TXA2-synthase inhibitors and was totally abolished by blockade of the thromboxane (TP) receptor. Hyperresponsiveness to phenylephrine (PE) of pulmonary arteries from hypoxic mice was also decreased by COX-2 inhibitors, TP receptor antagonists or catalase, but not by TXA2-synthase inhibitors. Finally, 8-iso-PGF2α induced a TP receptor-dependent contraction in pulmonary arteries and markedly potentiated the contractile response to PE. Conclusion Chronic hypoxia up-regulates COX-2 expression, increases 8-iso-PGF2α release, and shifts arachidonic acid-induced, endothelium-dependent relaxation to an endothelium-independent and TP receptor-dependent contraction in pulmonary arteries. COX-2-dependent production of 8-iso-PGF2α, by activating TP receptors, participates in hypoxia-induced hyperreactivity of pulmonary arteries. |
---|---|
ISSN: | 0008-6363 1755-3245 |
DOI: | 10.1093/cvr/cvp292 |