SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification

SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertroph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2010-03, Vol.137 (6), p.901-911
Hauptverfasser: Hattori, Takako, Müller, Catharina, Gebhard, Sonja, Bauer, Eva, Pausch, Friederike, Schlund, Britta, Bösl, Michael R., Hess, Andreas, Surmann-Schmitt, Cordula, von der Mark, Helga, de Crombrugghe, Benoit, von der Mark, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 911
container_issue 6
container_start_page 901
container_title Development (Cambridge)
container_volume 137
creator Hattori, Takako
Müller, Catharina
Gebhard, Sonja
Bauer, Eva
Pausch, Friederike
Schlund, Britta
Bösl, Michael R.
Hess, Andreas
Surmann-Schmitt, Cordula
von der Mark, Helga
de Crombrugghe, Benoit
von der Mark, Klaus
description SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.
doi_str_mv 10.1242/dev.045203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733672451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733672451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</originalsourceid><addsrcrecordid>eNo9kMtKxDAUhoMoznjZ-ACSnSBWc2tiljJ4A8GFCu5C2px2Ip1mTNoRfXqjM7oK_PnOzzkfQkeUnFMm2IWD1TkRJSN8C02pUKrQlOltNCW6JAXVmk7QXkpvhBAuldpFE0ao0kTLKRqeHl819glbvLBvIeIeWjv4FeAI7djZIUehwbWNg-9sC3hlU53z6L8yFvozXIUe8myM4QM3IS5-Y2x7h6F3oZ6H3kXb4ZCSb3z9-3uAdhrbJTjcvPvo5eb6eXZXPDze3s-uHopasHIohBMaBBF1RR1YaR04y6XUTqlLohRIwktZNkIqxhynmroGQFW6FNxJmXXso5N17zKG9xHSYBY-1dB1tocwJqN49sFESTN5uibrmBeN0Jhl9PmoT0OJ-ZFssmSzlpzh403tWC3A_aN_VjNwtgbmvp1_-Aim8qELrU9D-imCLiwN5cpIownl3xRTiQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733672451</pqid></control><display><type>article</type><title>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Hattori, Takako ; Müller, Catharina ; Gebhard, Sonja ; Bauer, Eva ; Pausch, Friederike ; Schlund, Britta ; Bösl, Michael R. ; Hess, Andreas ; Surmann-Schmitt, Cordula ; von der Mark, Helga ; de Crombrugghe, Benoit ; von der Mark, Klaus</creator><creatorcontrib>Hattori, Takako ; Müller, Catharina ; Gebhard, Sonja ; Bauer, Eva ; Pausch, Friederike ; Schlund, Britta ; Bösl, Michael R. ; Hess, Andreas ; Surmann-Schmitt, Cordula ; von der Mark, Helga ; de Crombrugghe, Benoit ; von der Mark, Klaus</creatorcontrib><description>SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.045203</identifier><identifier>PMID: 20179096</identifier><language>eng</language><publisher>England: The Company of Biologists Limited</publisher><subject>Animals ; Animals, Newborn ; Bone Marrow - embryology ; Bone Marrow - metabolism ; Calcification, Physiologic - genetics ; Cartilage - blood supply ; Cartilage - metabolism ; Cartilage, Articular - embryology ; Cartilage, Articular - growth &amp; development ; Cartilage, Articular - pathology ; Cartilage, Articular - physiology ; Cell Differentiation - genetics ; Chondrocytes - metabolism ; Chondrocytes - pathology ; Chondrocytes - physiology ; Embryo, Mammalian ; Gene Expression Regulation, Developmental ; Growth Plate - embryology ; Growth Plate - growth &amp; development ; Growth Plate - metabolism ; Hypertrophy - genetics ; Mice ; Mice, Transgenic ; Neovascularization, Physiologic - genetics ; Organogenesis - genetics ; Osteogenesis - genetics ; Osteogenesis - physiology ; SOX9 Transcription Factor - genetics ; SOX9 Transcription Factor - metabolism ; SOX9 Transcription Factor - physiology</subject><ispartof>Development (Cambridge), 2010-03, Vol.137 (6), p.901-911</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</citedby><cites>FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3664,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20179096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hattori, Takako</creatorcontrib><creatorcontrib>Müller, Catharina</creatorcontrib><creatorcontrib>Gebhard, Sonja</creatorcontrib><creatorcontrib>Bauer, Eva</creatorcontrib><creatorcontrib>Pausch, Friederike</creatorcontrib><creatorcontrib>Schlund, Britta</creatorcontrib><creatorcontrib>Bösl, Michael R.</creatorcontrib><creatorcontrib>Hess, Andreas</creatorcontrib><creatorcontrib>Surmann-Schmitt, Cordula</creatorcontrib><creatorcontrib>von der Mark, Helga</creatorcontrib><creatorcontrib>de Crombrugghe, Benoit</creatorcontrib><creatorcontrib>von der Mark, Klaus</creatorcontrib><title>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Bone Marrow - embryology</subject><subject>Bone Marrow - metabolism</subject><subject>Calcification, Physiologic - genetics</subject><subject>Cartilage - blood supply</subject><subject>Cartilage - metabolism</subject><subject>Cartilage, Articular - embryology</subject><subject>Cartilage, Articular - growth &amp; development</subject><subject>Cartilage, Articular - pathology</subject><subject>Cartilage, Articular - physiology</subject><subject>Cell Differentiation - genetics</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrocytes - pathology</subject><subject>Chondrocytes - physiology</subject><subject>Embryo, Mammalian</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Growth Plate - embryology</subject><subject>Growth Plate - growth &amp; development</subject><subject>Growth Plate - metabolism</subject><subject>Hypertrophy - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Organogenesis - genetics</subject><subject>Osteogenesis - genetics</subject><subject>Osteogenesis - physiology</subject><subject>SOX9 Transcription Factor - genetics</subject><subject>SOX9 Transcription Factor - metabolism</subject><subject>SOX9 Transcription Factor - physiology</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtKxDAUhoMoznjZ-ACSnSBWc2tiljJ4A8GFCu5C2px2Ip1mTNoRfXqjM7oK_PnOzzkfQkeUnFMm2IWD1TkRJSN8C02pUKrQlOltNCW6JAXVmk7QXkpvhBAuldpFE0ao0kTLKRqeHl819glbvLBvIeIeWjv4FeAI7djZIUehwbWNg-9sC3hlU53z6L8yFvozXIUe8myM4QM3IS5-Y2x7h6F3oZ6H3kXb4ZCSb3z9-3uAdhrbJTjcvPvo5eb6eXZXPDze3s-uHopasHIohBMaBBF1RR1YaR04y6XUTqlLohRIwktZNkIqxhynmroGQFW6FNxJmXXso5N17zKG9xHSYBY-1dB1tocwJqN49sFESTN5uibrmBeN0Jhl9PmoT0OJ-ZFssmSzlpzh403tWC3A_aN_VjNwtgbmvp1_-Aim8qELrU9D-imCLiwN5cpIownl3xRTiQI</recordid><startdate>20100315</startdate><enddate>20100315</enddate><creator>Hattori, Takako</creator><creator>Müller, Catharina</creator><creator>Gebhard, Sonja</creator><creator>Bauer, Eva</creator><creator>Pausch, Friederike</creator><creator>Schlund, Britta</creator><creator>Bösl, Michael R.</creator><creator>Hess, Andreas</creator><creator>Surmann-Schmitt, Cordula</creator><creator>von der Mark, Helga</creator><creator>de Crombrugghe, Benoit</creator><creator>von der Mark, Klaus</creator><general>The Company of Biologists Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100315</creationdate><title>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</title><author>Hattori, Takako ; Müller, Catharina ; Gebhard, Sonja ; Bauer, Eva ; Pausch, Friederike ; Schlund, Britta ; Bösl, Michael R. ; Hess, Andreas ; Surmann-Schmitt, Cordula ; von der Mark, Helga ; de Crombrugghe, Benoit ; von der Mark, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Bone Marrow - embryology</topic><topic>Bone Marrow - metabolism</topic><topic>Calcification, Physiologic - genetics</topic><topic>Cartilage - blood supply</topic><topic>Cartilage - metabolism</topic><topic>Cartilage, Articular - embryology</topic><topic>Cartilage, Articular - growth &amp; development</topic><topic>Cartilage, Articular - pathology</topic><topic>Cartilage, Articular - physiology</topic><topic>Cell Differentiation - genetics</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrocytes - pathology</topic><topic>Chondrocytes - physiology</topic><topic>Embryo, Mammalian</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Growth Plate - embryology</topic><topic>Growth Plate - growth &amp; development</topic><topic>Growth Plate - metabolism</topic><topic>Hypertrophy - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Organogenesis - genetics</topic><topic>Osteogenesis - genetics</topic><topic>Osteogenesis - physiology</topic><topic>SOX9 Transcription Factor - genetics</topic><topic>SOX9 Transcription Factor - metabolism</topic><topic>SOX9 Transcription Factor - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hattori, Takako</creatorcontrib><creatorcontrib>Müller, Catharina</creatorcontrib><creatorcontrib>Gebhard, Sonja</creatorcontrib><creatorcontrib>Bauer, Eva</creatorcontrib><creatorcontrib>Pausch, Friederike</creatorcontrib><creatorcontrib>Schlund, Britta</creatorcontrib><creatorcontrib>Bösl, Michael R.</creatorcontrib><creatorcontrib>Hess, Andreas</creatorcontrib><creatorcontrib>Surmann-Schmitt, Cordula</creatorcontrib><creatorcontrib>von der Mark, Helga</creatorcontrib><creatorcontrib>de Crombrugghe, Benoit</creatorcontrib><creatorcontrib>von der Mark, Klaus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hattori, Takako</au><au>Müller, Catharina</au><au>Gebhard, Sonja</au><au>Bauer, Eva</au><au>Pausch, Friederike</au><au>Schlund, Britta</au><au>Bösl, Michael R.</au><au>Hess, Andreas</au><au>Surmann-Schmitt, Cordula</au><au>von der Mark, Helga</au><au>de Crombrugghe, Benoit</au><au>von der Mark, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2010-03-15</date><risdate>2010</risdate><volume>137</volume><issue>6</issue><spage>901</spage><epage>911</epage><pages>901-911</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.</abstract><cop>England</cop><pub>The Company of Biologists Limited</pub><pmid>20179096</pmid><doi>10.1242/dev.045203</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2010-03, Vol.137 (6), p.901-911
issn 0950-1991
1477-9129
language eng
recordid cdi_proquest_miscellaneous_733672451
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Animals
Animals, Newborn
Bone Marrow - embryology
Bone Marrow - metabolism
Calcification, Physiologic - genetics
Cartilage - blood supply
Cartilage - metabolism
Cartilage, Articular - embryology
Cartilage, Articular - growth & development
Cartilage, Articular - pathology
Cartilage, Articular - physiology
Cell Differentiation - genetics
Chondrocytes - metabolism
Chondrocytes - pathology
Chondrocytes - physiology
Embryo, Mammalian
Gene Expression Regulation, Developmental
Growth Plate - embryology
Growth Plate - growth & development
Growth Plate - metabolism
Hypertrophy - genetics
Mice
Mice, Transgenic
Neovascularization, Physiologic - genetics
Organogenesis - genetics
Osteogenesis - genetics
Osteogenesis - physiology
SOX9 Transcription Factor - genetics
SOX9 Transcription Factor - metabolism
SOX9 Transcription Factor - physiology
title SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOX9%20is%20a%20major%20negative%20regulator%20of%20cartilage%20vascularization,%20bone%20marrow%20formation%20and%20endochondral%20ossification&rft.jtitle=Development%20(Cambridge)&rft.au=Hattori,%20Takako&rft.date=2010-03-15&rft.volume=137&rft.issue=6&rft.spage=901&rft.epage=911&rft.pages=901-911&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.045203&rft_dat=%3Cproquest_cross%3E733672451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733672451&rft_id=info:pmid/20179096&rfr_iscdi=true