SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification
SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertroph...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2010-03, Vol.137 (6), p.901-911 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 911 |
---|---|
container_issue | 6 |
container_start_page | 901 |
container_title | Development (Cambridge) |
container_volume | 137 |
creator | Hattori, Takako Müller, Catharina Gebhard, Sonja Bauer, Eva Pausch, Friederike Schlund, Britta Bösl, Michael R. Hess, Andreas Surmann-Schmitt, Cordula von der Mark, Helga de Crombrugghe, Benoit von der Mark, Klaus |
description | SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification. |
doi_str_mv | 10.1242/dev.045203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733672451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733672451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</originalsourceid><addsrcrecordid>eNo9kMtKxDAUhoMoznjZ-ACSnSBWc2tiljJ4A8GFCu5C2px2Ip1mTNoRfXqjM7oK_PnOzzkfQkeUnFMm2IWD1TkRJSN8C02pUKrQlOltNCW6JAXVmk7QXkpvhBAuldpFE0ao0kTLKRqeHl819glbvLBvIeIeWjv4FeAI7djZIUehwbWNg-9sC3hlU53z6L8yFvozXIUe8myM4QM3IS5-Y2x7h6F3oZ6H3kXb4ZCSb3z9-3uAdhrbJTjcvPvo5eb6eXZXPDze3s-uHopasHIohBMaBBF1RR1YaR04y6XUTqlLohRIwktZNkIqxhynmroGQFW6FNxJmXXso5N17zKG9xHSYBY-1dB1tocwJqN49sFESTN5uibrmBeN0Jhl9PmoT0OJ-ZFssmSzlpzh403tWC3A_aN_VjNwtgbmvp1_-Aim8qELrU9D-imCLiwN5cpIownl3xRTiQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733672451</pqid></control><display><type>article</type><title>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Hattori, Takako ; Müller, Catharina ; Gebhard, Sonja ; Bauer, Eva ; Pausch, Friederike ; Schlund, Britta ; Bösl, Michael R. ; Hess, Andreas ; Surmann-Schmitt, Cordula ; von der Mark, Helga ; de Crombrugghe, Benoit ; von der Mark, Klaus</creator><creatorcontrib>Hattori, Takako ; Müller, Catharina ; Gebhard, Sonja ; Bauer, Eva ; Pausch, Friederike ; Schlund, Britta ; Bösl, Michael R. ; Hess, Andreas ; Surmann-Schmitt, Cordula ; von der Mark, Helga ; de Crombrugghe, Benoit ; von der Mark, Klaus</creatorcontrib><description>SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.045203</identifier><identifier>PMID: 20179096</identifier><language>eng</language><publisher>England: The Company of Biologists Limited</publisher><subject>Animals ; Animals, Newborn ; Bone Marrow - embryology ; Bone Marrow - metabolism ; Calcification, Physiologic - genetics ; Cartilage - blood supply ; Cartilage - metabolism ; Cartilage, Articular - embryology ; Cartilage, Articular - growth & development ; Cartilage, Articular - pathology ; Cartilage, Articular - physiology ; Cell Differentiation - genetics ; Chondrocytes - metabolism ; Chondrocytes - pathology ; Chondrocytes - physiology ; Embryo, Mammalian ; Gene Expression Regulation, Developmental ; Growth Plate - embryology ; Growth Plate - growth & development ; Growth Plate - metabolism ; Hypertrophy - genetics ; Mice ; Mice, Transgenic ; Neovascularization, Physiologic - genetics ; Organogenesis - genetics ; Osteogenesis - genetics ; Osteogenesis - physiology ; SOX9 Transcription Factor - genetics ; SOX9 Transcription Factor - metabolism ; SOX9 Transcription Factor - physiology</subject><ispartof>Development (Cambridge), 2010-03, Vol.137 (6), p.901-911</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</citedby><cites>FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3664,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20179096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hattori, Takako</creatorcontrib><creatorcontrib>Müller, Catharina</creatorcontrib><creatorcontrib>Gebhard, Sonja</creatorcontrib><creatorcontrib>Bauer, Eva</creatorcontrib><creatorcontrib>Pausch, Friederike</creatorcontrib><creatorcontrib>Schlund, Britta</creatorcontrib><creatorcontrib>Bösl, Michael R.</creatorcontrib><creatorcontrib>Hess, Andreas</creatorcontrib><creatorcontrib>Surmann-Schmitt, Cordula</creatorcontrib><creatorcontrib>von der Mark, Helga</creatorcontrib><creatorcontrib>de Crombrugghe, Benoit</creatorcontrib><creatorcontrib>von der Mark, Klaus</creatorcontrib><title>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Bone Marrow - embryology</subject><subject>Bone Marrow - metabolism</subject><subject>Calcification, Physiologic - genetics</subject><subject>Cartilage - blood supply</subject><subject>Cartilage - metabolism</subject><subject>Cartilage, Articular - embryology</subject><subject>Cartilage, Articular - growth & development</subject><subject>Cartilage, Articular - pathology</subject><subject>Cartilage, Articular - physiology</subject><subject>Cell Differentiation - genetics</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrocytes - pathology</subject><subject>Chondrocytes - physiology</subject><subject>Embryo, Mammalian</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Growth Plate - embryology</subject><subject>Growth Plate - growth & development</subject><subject>Growth Plate - metabolism</subject><subject>Hypertrophy - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Organogenesis - genetics</subject><subject>Osteogenesis - genetics</subject><subject>Osteogenesis - physiology</subject><subject>SOX9 Transcription Factor - genetics</subject><subject>SOX9 Transcription Factor - metabolism</subject><subject>SOX9 Transcription Factor - physiology</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtKxDAUhoMoznjZ-ACSnSBWc2tiljJ4A8GFCu5C2px2Ip1mTNoRfXqjM7oK_PnOzzkfQkeUnFMm2IWD1TkRJSN8C02pUKrQlOltNCW6JAXVmk7QXkpvhBAuldpFE0ao0kTLKRqeHl819glbvLBvIeIeWjv4FeAI7djZIUehwbWNg-9sC3hlU53z6L8yFvozXIUe8myM4QM3IS5-Y2x7h6F3oZ6H3kXb4ZCSb3z9-3uAdhrbJTjcvPvo5eb6eXZXPDze3s-uHopasHIohBMaBBF1RR1YaR04y6XUTqlLohRIwktZNkIqxhynmroGQFW6FNxJmXXso5N17zKG9xHSYBY-1dB1tocwJqN49sFESTN5uibrmBeN0Jhl9PmoT0OJ-ZFssmSzlpzh403tWC3A_aN_VjNwtgbmvp1_-Aim8qELrU9D-imCLiwN5cpIownl3xRTiQI</recordid><startdate>20100315</startdate><enddate>20100315</enddate><creator>Hattori, Takako</creator><creator>Müller, Catharina</creator><creator>Gebhard, Sonja</creator><creator>Bauer, Eva</creator><creator>Pausch, Friederike</creator><creator>Schlund, Britta</creator><creator>Bösl, Michael R.</creator><creator>Hess, Andreas</creator><creator>Surmann-Schmitt, Cordula</creator><creator>von der Mark, Helga</creator><creator>de Crombrugghe, Benoit</creator><creator>von der Mark, Klaus</creator><general>The Company of Biologists Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100315</creationdate><title>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</title><author>Hattori, Takako ; Müller, Catharina ; Gebhard, Sonja ; Bauer, Eva ; Pausch, Friederike ; Schlund, Britta ; Bösl, Michael R. ; Hess, Andreas ; Surmann-Schmitt, Cordula ; von der Mark, Helga ; de Crombrugghe, Benoit ; von der Mark, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-4d49e404cb1dea6adeda3669d778077e603565f46722d3191dfee7b9543d66203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Bone Marrow - embryology</topic><topic>Bone Marrow - metabolism</topic><topic>Calcification, Physiologic - genetics</topic><topic>Cartilage - blood supply</topic><topic>Cartilage - metabolism</topic><topic>Cartilage, Articular - embryology</topic><topic>Cartilage, Articular - growth & development</topic><topic>Cartilage, Articular - pathology</topic><topic>Cartilage, Articular - physiology</topic><topic>Cell Differentiation - genetics</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrocytes - pathology</topic><topic>Chondrocytes - physiology</topic><topic>Embryo, Mammalian</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Growth Plate - embryology</topic><topic>Growth Plate - growth & development</topic><topic>Growth Plate - metabolism</topic><topic>Hypertrophy - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Organogenesis - genetics</topic><topic>Osteogenesis - genetics</topic><topic>Osteogenesis - physiology</topic><topic>SOX9 Transcription Factor - genetics</topic><topic>SOX9 Transcription Factor - metabolism</topic><topic>SOX9 Transcription Factor - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hattori, Takako</creatorcontrib><creatorcontrib>Müller, Catharina</creatorcontrib><creatorcontrib>Gebhard, Sonja</creatorcontrib><creatorcontrib>Bauer, Eva</creatorcontrib><creatorcontrib>Pausch, Friederike</creatorcontrib><creatorcontrib>Schlund, Britta</creatorcontrib><creatorcontrib>Bösl, Michael R.</creatorcontrib><creatorcontrib>Hess, Andreas</creatorcontrib><creatorcontrib>Surmann-Schmitt, Cordula</creatorcontrib><creatorcontrib>von der Mark, Helga</creatorcontrib><creatorcontrib>de Crombrugghe, Benoit</creatorcontrib><creatorcontrib>von der Mark, Klaus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hattori, Takako</au><au>Müller, Catharina</au><au>Gebhard, Sonja</au><au>Bauer, Eva</au><au>Pausch, Friederike</au><au>Schlund, Britta</au><au>Bösl, Michael R.</au><au>Hess, Andreas</au><au>Surmann-Schmitt, Cordula</au><au>von der Mark, Helga</au><au>de Crombrugghe, Benoit</au><au>von der Mark, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2010-03-15</date><risdate>2010</risdate><volume>137</volume><issue>6</issue><spage>901</spage><epage>911</epage><pages>901-911</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>SOX9 is a transcription factor of the SRY family that regulates sex determination, cartilage development and numerous other developmental events. In the foetal growth plate, Sox9 is highly expressed in chondrocytes of the proliferating and prehypertrophic zone but declines abruptly in the hypertrophic zone, suggesting that Sox9 downregulation in hypertrophic chondrocytes might be a necessary step to initiate cartilage-bone transition in the growth plate. In order to test this hypothesis, we generated transgenic mice misexpressing Sox9 in hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter. The transgenic offspring showed an almost complete lack of bone marrow in newborns, owing to strongly retarded vascular invasion into hypertrophic cartilage and impaired cartilage resorption, resulting in delayed endochondral bone formation associated with reduced bone growth. In situ hybridization analysis revealed high levels of Sox9 misexpression in hypertrophic chondrocytes but deficiencies of Vegfa, Mmp13, RANKL and osteopontin expression in the non-resorbed hypertrophic cartilage, indicating that Sox9 misexpression in hypertrophic chondrocytes inhibits their terminal differentiation. Searching for the molecular mechanism of SOX9-induced inhibition of cartilage vascularization, we discovered that SOX9 is able to directly suppress Vegfa expression by binding to SRY sites in the Vegfa gene. Postnatally, bone marrow formation and cartilage resorption in transgenic offspring are resumed by massive invasion of capillaries through the cortical bone shaft, similar to secondary ossification. These findings imply that downregulation of Sox9 in the hypertrophic zone of the normal growth plate is essential for allowing vascular invasion, bone marrow formation and endochondral ossification.</abstract><cop>England</cop><pub>The Company of Biologists Limited</pub><pmid>20179096</pmid><doi>10.1242/dev.045203</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2010-03, Vol.137 (6), p.901-911 |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_proquest_miscellaneous_733672451 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Animals Animals, Newborn Bone Marrow - embryology Bone Marrow - metabolism Calcification, Physiologic - genetics Cartilage - blood supply Cartilage - metabolism Cartilage, Articular - embryology Cartilage, Articular - growth & development Cartilage, Articular - pathology Cartilage, Articular - physiology Cell Differentiation - genetics Chondrocytes - metabolism Chondrocytes - pathology Chondrocytes - physiology Embryo, Mammalian Gene Expression Regulation, Developmental Growth Plate - embryology Growth Plate - growth & development Growth Plate - metabolism Hypertrophy - genetics Mice Mice, Transgenic Neovascularization, Physiologic - genetics Organogenesis - genetics Osteogenesis - genetics Osteogenesis - physiology SOX9 Transcription Factor - genetics SOX9 Transcription Factor - metabolism SOX9 Transcription Factor - physiology |
title | SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOX9%20is%20a%20major%20negative%20regulator%20of%20cartilage%20vascularization,%20bone%20marrow%20formation%20and%20endochondral%20ossification&rft.jtitle=Development%20(Cambridge)&rft.au=Hattori,%20Takako&rft.date=2010-03-15&rft.volume=137&rft.issue=6&rft.spage=901&rft.epage=911&rft.pages=901-911&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.045203&rft_dat=%3Cproquest_cross%3E733672451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733672451&rft_id=info:pmid/20179096&rfr_iscdi=true |