The thermodynamic stability of insulin disulfides is not affected by the C-domain of insulin-like growth factor 1

Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Life sciences 2002-06, Vol.45 (3), p.245-250
Hauptverfasser: Guo, Zhanyun, Feng, Youmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermodynamic stability. To elucidate the molecular mechanism of their different folding behavior, we prepared a singlechain hybrid of insulin and IGF-1, [B10Glu]Ins/IGF-1(C), and studied its folding behavior compared with that of PIP and IGF-1. We also separated a major non-native disulfides isomer of the hybrid and studied its refolding. The data showed that the C-domain of IGF-1 did not affect the folding thermodynamics of insulin, that is, the primary structure of the hybrid encoded only one thermodynamically stable disulfides linkage. However, the folding kinetics of insulin was affected by the C-domain of IGF-1.
ISSN:1006-9305
1674-7305
1869-1889
DOI:10.1360/02yc9027