Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques
Mechanical properties of micro/nanoscale structures are needed to design reliable micro/nanoelectromechanical systems (MEMS/NEMS). Micro/nanomechanical characterization of bulk materials of undoped single-crystal silicon and thin films of undoped polysilicon, SiO 2, SiC, Ni–P, and Au have been carri...
Gespeichert in:
Veröffentlicht in: | Ultramicroscopy 2003-10, Vol.97 (1), p.481-494 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 1 |
container_start_page | 481 |
container_title | Ultramicroscopy |
container_volume | 97 |
creator | Li, Xiaodong Bhushan, Bharat Takashima, Kazuki Baek, Chang-Wook Kim, Yong-Kweon |
description | Mechanical properties of micro/nanoscale structures are needed to design reliable micro/nanoelectromechanical systems (MEMS/NEMS). Micro/nanomechanical characterization of bulk materials of undoped single-crystal silicon and thin films of undoped polysilicon, SiO
2, SiC, Ni–P, and Au have been carried out. Hardness, elastic modulus and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Fracture toughness was measured by indentation using a Vickers indenter. Bending tests were performed on the nanoscale silicon beams, microscale Ni–P and Au beams using a depth-sensing nanoindenter. It is found that the SiC film exhibits higher hardness, elastic modulus and scratch resistance as compared to other materials. In the bending tests, the nanoscale Si beams failed in a brittle manner with a flat fracture surface. The notched Ni–P beam showed linear deformation behavior followed by abrupt failure. The Au beam showed elastic–plastic deformation behavior. FEM simulation can well predict the stress distribution in the beams studied. The nanoindentation, scratch and bending tests used in this study can be satisfactorily used to evaluate the mechanical properties of micro/nanoscale structures for use in MEMS/NEMS. |
doi_str_mv | 10.1016/S0304-3991(03)00077-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73366368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399103000779</els_id><sourcerecordid>27842744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4f74551e91f16878ed7258298fc6ab3d8fab9695a348e5d21178113539444303</originalsourceid><addsrcrecordid>eNqFkc9PFDEcxRujkWX1T5D0IoHDuP010_ZECEE0YfUA96bb-VZqZjtr2zHBv94Ou4Ejl7aHz3uveQ-hT5R8oYR2qzvCiWi41vSM8HNCiJSNfoMWVEndMMn4W7R4Ro7Qcc6_K0SJUO_REWWKUEnaBZrW4B5sDM4OuD6SdQVS-GdLGCMePd4Gl8ZVtHHMFQGcS5pcmRJk7MeE19fru9WPemC72w3VZdZlPOUQf-FZFWIPseztSo2K4c8E-QN65-2Q4ePhXqL7r9f3V9-a2583368ubxsnlCqN8FK0LQVNPe2UVNBL1iqmlXed3fBeebvRnW4tFwranlEqFaW85VoIwQlfotO97S6Nc2wx25AdDIONME7ZSM67jnfqVZBJJZisnkvU7sHaSs4JvNmlsLXp0VBi5l3M0y5mLt0Qbp52MbrqTg4B02YL_YvqMEQFPh8AOxftk40u5Beu9sE6wit3seeg1vY3QDLZBYgO-pDAFdOP4ZWv_Ad9iKqF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27842744</pqid></control><display><type>article</type><title>Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Xiaodong ; Bhushan, Bharat ; Takashima, Kazuki ; Baek, Chang-Wook ; Kim, Yong-Kweon</creator><creatorcontrib>Li, Xiaodong ; Bhushan, Bharat ; Takashima, Kazuki ; Baek, Chang-Wook ; Kim, Yong-Kweon</creatorcontrib><description>Mechanical properties of micro/nanoscale structures are needed to design reliable micro/nanoelectromechanical systems (MEMS/NEMS). Micro/nanomechanical characterization of bulk materials of undoped single-crystal silicon and thin films of undoped polysilicon, SiO
2, SiC, Ni–P, and Au have been carried out. Hardness, elastic modulus and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Fracture toughness was measured by indentation using a Vickers indenter. Bending tests were performed on the nanoscale silicon beams, microscale Ni–P and Au beams using a depth-sensing nanoindenter. It is found that the SiC film exhibits higher hardness, elastic modulus and scratch resistance as compared to other materials. In the bending tests, the nanoscale Si beams failed in a brittle manner with a flat fracture surface. The notched Ni–P beam showed linear deformation behavior followed by abrupt failure. The Au beam showed elastic–plastic deformation behavior. FEM simulation can well predict the stress distribution in the beams studied. The nanoindentation, scratch and bending tests used in this study can be satisfactorily used to evaluate the mechanical properties of micro/nanoscale structures for use in MEMS/NEMS.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/S0304-3991(03)00077-9</identifier><identifier>PMID: 12801705</identifier><identifier>CODEN: ULTRD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Au films ; Electronics ; Exact sciences and technology ; Mechanical properties ; Micro- and nanoelectromechanical devices (mems/nems) ; Micro/nanoscale beams ; Ni–P films ; Polysilicon films ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SiC films ; SiO 2 films</subject><ispartof>Ultramicroscopy, 2003-10, Vol.97 (1), p.481-494</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4f74551e91f16878ed7258298fc6ab3d8fab9695a348e5d21178113539444303</citedby><cites>FETCH-LOGICAL-c488t-4f74551e91f16878ed7258298fc6ab3d8fab9695a348e5d21178113539444303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3991(03)00077-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14882603$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12801705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Bhushan, Bharat</creatorcontrib><creatorcontrib>Takashima, Kazuki</creatorcontrib><creatorcontrib>Baek, Chang-Wook</creatorcontrib><creatorcontrib>Kim, Yong-Kweon</creatorcontrib><title>Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Mechanical properties of micro/nanoscale structures are needed to design reliable micro/nanoelectromechanical systems (MEMS/NEMS). Micro/nanomechanical characterization of bulk materials of undoped single-crystal silicon and thin films of undoped polysilicon, SiO
2, SiC, Ni–P, and Au have been carried out. Hardness, elastic modulus and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Fracture toughness was measured by indentation using a Vickers indenter. Bending tests were performed on the nanoscale silicon beams, microscale Ni–P and Au beams using a depth-sensing nanoindenter. It is found that the SiC film exhibits higher hardness, elastic modulus and scratch resistance as compared to other materials. In the bending tests, the nanoscale Si beams failed in a brittle manner with a flat fracture surface. The notched Ni–P beam showed linear deformation behavior followed by abrupt failure. The Au beam showed elastic–plastic deformation behavior. FEM simulation can well predict the stress distribution in the beams studied. The nanoindentation, scratch and bending tests used in this study can be satisfactorily used to evaluate the mechanical properties of micro/nanoscale structures for use in MEMS/NEMS.</description><subject>Applied sciences</subject><subject>Au films</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Micro/nanoscale beams</subject><subject>Ni–P films</subject><subject>Polysilicon films</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SiC films</subject><subject>SiO 2 films</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PFDEcxRujkWX1T5D0IoHDuP010_ZECEE0YfUA96bb-VZqZjtr2zHBv94Ou4Ejl7aHz3uveQ-hT5R8oYR2qzvCiWi41vSM8HNCiJSNfoMWVEndMMn4W7R4Ro7Qcc6_K0SJUO_REWWKUEnaBZrW4B5sDM4OuD6SdQVS-GdLGCMePd4Gl8ZVtHHMFQGcS5pcmRJk7MeE19fru9WPemC72w3VZdZlPOUQf-FZFWIPseztSo2K4c8E-QN65-2Q4ePhXqL7r9f3V9-a2583368ubxsnlCqN8FK0LQVNPe2UVNBL1iqmlXed3fBeebvRnW4tFwranlEqFaW85VoIwQlfotO97S6Nc2wx25AdDIONME7ZSM67jnfqVZBJJZisnkvU7sHaSs4JvNmlsLXp0VBi5l3M0y5mLt0Qbp52MbrqTg4B02YL_YvqMEQFPh8AOxftk40u5Beu9sE6wit3seeg1vY3QDLZBYgO-pDAFdOP4ZWv_Ad9iKqF</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Li, Xiaodong</creator><creator>Bhushan, Bharat</creator><creator>Takashima, Kazuki</creator><creator>Baek, Chang-Wook</creator><creator>Kim, Yong-Kweon</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques</title><author>Li, Xiaodong ; Bhushan, Bharat ; Takashima, Kazuki ; Baek, Chang-Wook ; Kim, Yong-Kweon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4f74551e91f16878ed7258298fc6ab3d8fab9695a348e5d21178113539444303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Au films</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Micro/nanoscale beams</topic><topic>Ni–P films</topic><topic>Polysilicon films</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SiC films</topic><topic>SiO 2 films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Bhushan, Bharat</creatorcontrib><creatorcontrib>Takashima, Kazuki</creatorcontrib><creatorcontrib>Baek, Chang-Wook</creatorcontrib><creatorcontrib>Kim, Yong-Kweon</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaodong</au><au>Bhushan, Bharat</au><au>Takashima, Kazuki</au><au>Baek, Chang-Wook</au><au>Kim, Yong-Kweon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>97</volume><issue>1</issue><spage>481</spage><epage>494</epage><pages>481-494</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><coden>ULTRD6</coden><abstract>Mechanical properties of micro/nanoscale structures are needed to design reliable micro/nanoelectromechanical systems (MEMS/NEMS). Micro/nanomechanical characterization of bulk materials of undoped single-crystal silicon and thin films of undoped polysilicon, SiO
2, SiC, Ni–P, and Au have been carried out. Hardness, elastic modulus and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Fracture toughness was measured by indentation using a Vickers indenter. Bending tests were performed on the nanoscale silicon beams, microscale Ni–P and Au beams using a depth-sensing nanoindenter. It is found that the SiC film exhibits higher hardness, elastic modulus and scratch resistance as compared to other materials. In the bending tests, the nanoscale Si beams failed in a brittle manner with a flat fracture surface. The notched Ni–P beam showed linear deformation behavior followed by abrupt failure. The Au beam showed elastic–plastic deformation behavior. FEM simulation can well predict the stress distribution in the beams studied. The nanoindentation, scratch and bending tests used in this study can be satisfactorily used to evaluate the mechanical properties of micro/nanoscale structures for use in MEMS/NEMS.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>12801705</pmid><doi>10.1016/S0304-3991(03)00077-9</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2003-10, Vol.97 (1), p.481-494 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_proquest_miscellaneous_73366368 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Au films Electronics Exact sciences and technology Mechanical properties Micro- and nanoelectromechanical devices (mems/nems) Micro/nanoscale beams Ni–P films Polysilicon films Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices SiC films SiO 2 films |
title | Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20of%20micro/nanoscale%20structures%20for%20MEMS/NEMS%20applications%20using%20nanoindentation%20techniques&rft.jtitle=Ultramicroscopy&rft.au=Li,%20Xiaodong&rft.date=2003-10-01&rft.volume=97&rft.issue=1&rft.spage=481&rft.epage=494&rft.pages=481-494&rft.issn=0304-3991&rft.eissn=1879-2723&rft.coden=ULTRD6&rft_id=info:doi/10.1016/S0304-3991(03)00077-9&rft_dat=%3Cproquest_cross%3E27842744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27842744&rft_id=info:pmid/12801705&rft_els_id=S0304399103000779&rfr_iscdi=true |