Continuous 2-Keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia

The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2010-03, Vol.86 (2), p.469-480
Hauptverfasser: Takagi, Yoshinori, Sugisawa, Teruhide, Hoshino, Tatsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 2
container_start_page 469
container_title Applied microbiology and biotechnology
container_volume 86
creator Takagi, Yoshinori
Sugisawa, Teruhide
Hoshino, Tatsuo
description The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h⁻¹ in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h⁻¹ and 0.0380 hour⁻¹, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour⁻¹, and the overall productivity was calculated to be 2.55 g/L/h.
doi_str_mv 10.1007/s00253-009-2312-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733658977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036717741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-9baca47cad3bfa697e67197ebc97aef050183a40449ace92f0589d5c4dbe30db3</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMo7jj6AF40COIpWklnOt1HHf_iiod1wVuoTqd7s6STMekW9018XNPM4IIHLylI_b6vivoIeczhJQdQrzKA2FUMoGWi4oLxO2TDZSUY1FzeJRvgasfUrm3OyIOcrwG4aOr6PjnjbQtCgNqQ3_sYZheWuGQq2Gc7R-bZuPgYnKFoXE8HmyYbZpxdDLS7oZP7ZXtqFj8vydI40FV0UrjRBrdM9OfiRyzdtxdfqCw7Ugw9fVPsvC9zJjvibNMKxkS_Y5iv4hQDlg76OR6unHf4kNwb0Gf76FS35PL9u2_7j-z864dP-9fnzMiaz6zt0KBUBvuqG7Bula0VL29nWoV2gB3wpkIJUrZobCvKT9P2OyP7zlbQd9WWvDj6HlL8sdg868llY73HYMtRtKqqukiUKuSzf8jruKRQltOiaSTUTWG3hB8hk2LOyQ76kNyE6UZz0Gto-hiaLqHpNTTNi-bJyXjpJtvfKk4pFeD5CcBs0A8Jg3H5LyeEVHUDq5E4crm0wmjT7Yb_m_70KBowahxTMb68EMWtXA5qELz6A5xkuhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>288406873</pqid></control><display><type>article</type><title>Continuous 2-Keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Takagi, Yoshinori ; Sugisawa, Teruhide ; Hoshino, Tatsuo</creator><creatorcontrib>Takagi, Yoshinori ; Sugisawa, Teruhide ; Hoshino, Tatsuo</creatorcontrib><description>The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h⁻¹ in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h⁻¹ and 0.0380 hour⁻¹, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour⁻¹, and the overall productivity was calculated to be 2.55 g/L/h.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-009-2312-1</identifier><identifier>PMID: 19902207</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Acids ; Bacillus megaterium - metabolism ; Bacteria ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnological Products and Process Engineering ; Biotechnology ; Cell culture ; Coculture Techniques ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Life Sciences ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Productivity ; Rhodobacteraceae - metabolism ; Sorbose - metabolism ; Stenotrophomonas maltophilia - metabolism ; Studies ; Sugar Acids - metabolism ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2010-03, Vol.86 (2), p.469-480</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-9baca47cad3bfa697e67197ebc97aef050183a40449ace92f0589d5c4dbe30db3</citedby><cites>FETCH-LOGICAL-c461t-9baca47cad3bfa697e67197ebc97aef050183a40449ace92f0589d5c4dbe30db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-009-2312-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-009-2312-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22476801$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19902207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Yoshinori</creatorcontrib><creatorcontrib>Sugisawa, Teruhide</creatorcontrib><creatorcontrib>Hoshino, Tatsuo</creatorcontrib><title>Continuous 2-Keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h⁻¹ in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h⁻¹ and 0.0380 hour⁻¹, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour⁻¹, and the overall productivity was calculated to be 2.55 g/L/h.</description><subject>Acids</subject><subject>Bacillus megaterium - metabolism</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Coculture Techniques</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Productivity</subject><subject>Rhodobacteraceae - metabolism</subject><subject>Sorbose - metabolism</subject><subject>Stenotrophomonas maltophilia - metabolism</subject><subject>Studies</subject><subject>Sugar Acids - metabolism</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc-KFDEQxoMo7jj6AF40COIpWklnOt1HHf_iiod1wVuoTqd7s6STMekW9018XNPM4IIHLylI_b6vivoIeczhJQdQrzKA2FUMoGWi4oLxO2TDZSUY1FzeJRvgasfUrm3OyIOcrwG4aOr6PjnjbQtCgNqQ3_sYZheWuGQq2Gc7R-bZuPgYnKFoXE8HmyYbZpxdDLS7oZP7ZXtqFj8vydI40FV0UrjRBrdM9OfiRyzdtxdfqCw7Ugw9fVPsvC9zJjvibNMKxkS_Y5iv4hQDlg76OR6unHf4kNwb0Gf76FS35PL9u2_7j-z864dP-9fnzMiaz6zt0KBUBvuqG7Bula0VL29nWoV2gB3wpkIJUrZobCvKT9P2OyP7zlbQd9WWvDj6HlL8sdg868llY73HYMtRtKqqukiUKuSzf8jruKRQltOiaSTUTWG3hB8hk2LOyQ76kNyE6UZz0Gto-hiaLqHpNTTNi-bJyXjpJtvfKk4pFeD5CcBs0A8Jg3H5LyeEVHUDq5E4crm0wmjT7Yb_m_70KBowahxTMb68EMWtXA5qELz6A5xkuhc</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Takagi, Yoshinori</creator><creator>Sugisawa, Teruhide</creator><creator>Hoshino, Tatsuo</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>Continuous 2-Keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia</title><author>Takagi, Yoshinori ; Sugisawa, Teruhide ; Hoshino, Tatsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-9baca47cad3bfa697e67197ebc97aef050183a40449ace92f0589d5c4dbe30db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acids</topic><topic>Bacillus megaterium - metabolism</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Coculture Techniques</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Productivity</topic><topic>Rhodobacteraceae - metabolism</topic><topic>Sorbose - metabolism</topic><topic>Stenotrophomonas maltophilia - metabolism</topic><topic>Studies</topic><topic>Sugar Acids - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Yoshinori</creatorcontrib><creatorcontrib>Sugisawa, Teruhide</creatorcontrib><creatorcontrib>Hoshino, Tatsuo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Yoshinori</au><au>Sugisawa, Teruhide</au><au>Hoshino, Tatsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous 2-Keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>86</volume><issue>2</issue><spage>469</spage><epage>480</epage><pages>469-480</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h⁻¹ in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h⁻¹ and 0.0380 hour⁻¹, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour⁻¹, and the overall productivity was calculated to be 2.55 g/L/h.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19902207</pmid><doi>10.1007/s00253-009-2312-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2010-03, Vol.86 (2), p.469-480
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_733658977
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Acids
Bacillus megaterium - metabolism
Bacteria
Biological and medical sciences
Biomedical and Life Sciences
Biotechnological Products and Process Engineering
Biotechnology
Cell culture
Coculture Techniques
Fermentation
Fundamental and applied biological sciences. Psychology
Life Sciences
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Productivity
Rhodobacteraceae - metabolism
Sorbose - metabolism
Stenotrophomonas maltophilia - metabolism
Studies
Sugar Acids - metabolism
Yeast
title Continuous 2-Keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%202-Keto-l-gulonic%20acid%20fermentation%20by%20mixed%20culture%20of%20Ketogulonicigenium%20vulgare%20DSM%204025%20and%20Bacillus%20megaterium%20or%20Xanthomonas%20maltophilia&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Takagi,%20Yoshinori&rft.date=2010-03-01&rft.volume=86&rft.issue=2&rft.spage=469&rft.epage=480&rft.pages=469-480&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-009-2312-1&rft_dat=%3Cproquest_cross%3E2036717741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=288406873&rft_id=info:pmid/19902207&rfr_iscdi=true