Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone

Ultrasonic irradiation in the presence of ozone is demonstrated to be effective for the rapid oxidation of oxalic acid, bioxalate, and oxalate (H2C2O4/HC2O4 −/C2O4 2−) in aqueous solution to CO2 and H2O. The degradation rate of bioxalate exposed to “sonozone” (i.e., simultaneous ultrasonication and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2010-04, Vol.114 (14), p.4968-4980
Hauptverfasser: Vecitis, Chad D, Lesko, Timothy, Colussi, Agustin J, Hoffmann, Michael R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4980
container_issue 14
container_start_page 4968
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 114
creator Vecitis, Chad D
Lesko, Timothy
Colussi, Agustin J
Hoffmann, Michael R
description Ultrasonic irradiation in the presence of ozone is demonstrated to be effective for the rapid oxidation of oxalic acid, bioxalate, and oxalate (H2C2O4/HC2O4 −/C2O4 2−) in aqueous solution to CO2 and H2O. The degradation rate of bioxalate exposed to “sonozone” (i.e., simultaneous ultrasonication and ozonolysis) was found to be 16-times faster than predicted by the linear addition of ozonolysis and ultrasonic irradiation rates. The hydroxyl radical (•OH) is the only oxy-radical produced that can oxidize oxalate on a relevant time-scale. Thus, plausible •OH production mechanisms are evaluated to explain the observed kinetic synergism of ultrasonication and ozonolysis toward bioxalate decomposition. •OH production via decomposition of O3 in the cavitating bubble vapor and via the reaction of O3 and H2O2 are considered, but kinetic estimations and experimental evidence indicate neither to be a sufficient source of •OH. A free-radical chain mechanism is proposed in which the HC2O4 − + •OH reaction functions as a primary propagation step, while the termination occurs through the O3 + CO2 •− reaction via an O-atom transfer mechanism. Kinetic simulations confirm that ozone reacts efficiently with the superoxide (O2 •−) ion that is produced by the reaction of O2 and CO2 •− to form •OH radical, and that the reaction of O3 + CO2 •− must be chain terminating. Oxalate is also readily oxidized by “peroxone” treatment (i.e., H2O2 and O3). However, the addition of H2O2 during the course of the sonolytic ozonation of oxalic acid does not appear to increase the observed degradation rate and decreases rates at millimolar levels.
doi_str_mv 10.1021/jp9115386
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733645427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733645427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-3db34d04f50541677e75b94d546429842b3d8cbaa31f6f19de53d7a3a2357303</originalsourceid><addsrcrecordid>eNpt0E1Lw0AQBuBFFFurB_-A7EXEQ3Q_k-yxrfUDChXsPWw2E9yS7MZsAtZfb0prT55mDg8vMy9C15Q8UMLo46ZRlEqexidoTCUjkWRUng47SVUkY65G6CKEDSGEcibO0YgRxpRK5RgtPrzz1bazBj-B8XXjg-2sd9iXePrVg-8Dnln_rSvdAbYOd5-A31sI4Azs0OrHO7hEZ6WuAlwd5gStnxfr-Wu0XL28zafLSHMquogXORcFEaUkUtA4SSCRuRKFFLFgKhUs50Vqcj3oMi6pKkDyItFcMy4TTvgE3e1jm9YPt4Uuq20wUFXa7Q7NEs5jIQVLBnm_l6b1IbRQZk1ra91uM0qyXWfZsbPB3hxS-7yG4ij_ShrA7R5oE7KN71s3_PhP0C_0snD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733645427</pqid></control><display><type>article</type><title>Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Vecitis, Chad D ; Lesko, Timothy ; Colussi, Agustin J ; Hoffmann, Michael R</creator><creatorcontrib>Vecitis, Chad D ; Lesko, Timothy ; Colussi, Agustin J ; Hoffmann, Michael R</creatorcontrib><description>Ultrasonic irradiation in the presence of ozone is demonstrated to be effective for the rapid oxidation of oxalic acid, bioxalate, and oxalate (H2C2O4/HC2O4 −/C2O4 2−) in aqueous solution to CO2 and H2O. The degradation rate of bioxalate exposed to “sonozone” (i.e., simultaneous ultrasonication and ozonolysis) was found to be 16-times faster than predicted by the linear addition of ozonolysis and ultrasonic irradiation rates. The hydroxyl radical (•OH) is the only oxy-radical produced that can oxidize oxalate on a relevant time-scale. Thus, plausible •OH production mechanisms are evaluated to explain the observed kinetic synergism of ultrasonication and ozonolysis toward bioxalate decomposition. •OH production via decomposition of O3 in the cavitating bubble vapor and via the reaction of O3 and H2O2 are considered, but kinetic estimations and experimental evidence indicate neither to be a sufficient source of •OH. A free-radical chain mechanism is proposed in which the HC2O4 − + •OH reaction functions as a primary propagation step, while the termination occurs through the O3 + CO2 •− reaction via an O-atom transfer mechanism. Kinetic simulations confirm that ozone reacts efficiently with the superoxide (O2 •−) ion that is produced by the reaction of O2 and CO2 •− to form •OH radical, and that the reaction of O3 + CO2 •− must be chain terminating. Oxalate is also readily oxidized by “peroxone” treatment (i.e., H2O2 and O3). However, the addition of H2O2 during the course of the sonolytic ozonation of oxalic acid does not appear to increase the observed degradation rate and decreases rates at millimolar levels.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp9115386</identifier><identifier>PMID: 20229985</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Atmospheric, Environmental and Green Chemistry ; Hydroxyl Radical - chemistry ; Kinetics ; Models, Chemical ; Oxalic Acid - chemistry ; Oxidation-Reduction ; Ozone - chemistry ; Sonication ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2010-04, Vol.114 (14), p.4968-4980</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-3db34d04f50541677e75b94d546429842b3d8cbaa31f6f19de53d7a3a2357303</citedby><cites>FETCH-LOGICAL-a314t-3db34d04f50541677e75b94d546429842b3d8cbaa31f6f19de53d7a3a2357303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp9115386$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp9115386$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20229985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vecitis, Chad D</creatorcontrib><creatorcontrib>Lesko, Timothy</creatorcontrib><creatorcontrib>Colussi, Agustin J</creatorcontrib><creatorcontrib>Hoffmann, Michael R</creatorcontrib><title>Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Ultrasonic irradiation in the presence of ozone is demonstrated to be effective for the rapid oxidation of oxalic acid, bioxalate, and oxalate (H2C2O4/HC2O4 −/C2O4 2−) in aqueous solution to CO2 and H2O. The degradation rate of bioxalate exposed to “sonozone” (i.e., simultaneous ultrasonication and ozonolysis) was found to be 16-times faster than predicted by the linear addition of ozonolysis and ultrasonic irradiation rates. The hydroxyl radical (•OH) is the only oxy-radical produced that can oxidize oxalate on a relevant time-scale. Thus, plausible •OH production mechanisms are evaluated to explain the observed kinetic synergism of ultrasonication and ozonolysis toward bioxalate decomposition. •OH production via decomposition of O3 in the cavitating bubble vapor and via the reaction of O3 and H2O2 are considered, but kinetic estimations and experimental evidence indicate neither to be a sufficient source of •OH. A free-radical chain mechanism is proposed in which the HC2O4 − + •OH reaction functions as a primary propagation step, while the termination occurs through the O3 + CO2 •− reaction via an O-atom transfer mechanism. Kinetic simulations confirm that ozone reacts efficiently with the superoxide (O2 •−) ion that is produced by the reaction of O2 and CO2 •− to form •OH radical, and that the reaction of O3 + CO2 •− must be chain terminating. Oxalate is also readily oxidized by “peroxone” treatment (i.e., H2O2 and O3). However, the addition of H2O2 during the course of the sonolytic ozonation of oxalic acid does not appear to increase the observed degradation rate and decreases rates at millimolar levels.</description><subject>A: Atmospheric, Environmental and Green Chemistry</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Oxalic Acid - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Ozone - chemistry</subject><subject>Sonication</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1Lw0AQBuBFFFurB_-A7EXEQ3Q_k-yxrfUDChXsPWw2E9yS7MZsAtZfb0prT55mDg8vMy9C15Q8UMLo46ZRlEqexidoTCUjkWRUng47SVUkY65G6CKEDSGEcibO0YgRxpRK5RgtPrzz1bazBj-B8XXjg-2sd9iXePrVg-8Dnln_rSvdAbYOd5-A31sI4Azs0OrHO7hEZ6WuAlwd5gStnxfr-Wu0XL28zafLSHMquogXORcFEaUkUtA4SSCRuRKFFLFgKhUs50Vqcj3oMi6pKkDyItFcMy4TTvgE3e1jm9YPt4Uuq20wUFXa7Q7NEs5jIQVLBnm_l6b1IbRQZk1ra91uM0qyXWfZsbPB3hxS-7yG4ij_ShrA7R5oE7KN71s3_PhP0C_0snD_</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Vecitis, Chad D</creator><creator>Lesko, Timothy</creator><creator>Colussi, Agustin J</creator><creator>Hoffmann, Michael R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100415</creationdate><title>Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone</title><author>Vecitis, Chad D ; Lesko, Timothy ; Colussi, Agustin J ; Hoffmann, Michael R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-3db34d04f50541677e75b94d546429842b3d8cbaa31f6f19de53d7a3a2357303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A: Atmospheric, Environmental and Green Chemistry</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Oxalic Acid - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Ozone - chemistry</topic><topic>Sonication</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vecitis, Chad D</creatorcontrib><creatorcontrib>Lesko, Timothy</creatorcontrib><creatorcontrib>Colussi, Agustin J</creatorcontrib><creatorcontrib>Hoffmann, Michael R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vecitis, Chad D</au><au>Lesko, Timothy</au><au>Colussi, Agustin J</au><au>Hoffmann, Michael R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2010-04-15</date><risdate>2010</risdate><volume>114</volume><issue>14</issue><spage>4968</spage><epage>4980</epage><pages>4968-4980</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Ultrasonic irradiation in the presence of ozone is demonstrated to be effective for the rapid oxidation of oxalic acid, bioxalate, and oxalate (H2C2O4/HC2O4 −/C2O4 2−) in aqueous solution to CO2 and H2O. The degradation rate of bioxalate exposed to “sonozone” (i.e., simultaneous ultrasonication and ozonolysis) was found to be 16-times faster than predicted by the linear addition of ozonolysis and ultrasonic irradiation rates. The hydroxyl radical (•OH) is the only oxy-radical produced that can oxidize oxalate on a relevant time-scale. Thus, plausible •OH production mechanisms are evaluated to explain the observed kinetic synergism of ultrasonication and ozonolysis toward bioxalate decomposition. •OH production via decomposition of O3 in the cavitating bubble vapor and via the reaction of O3 and H2O2 are considered, but kinetic estimations and experimental evidence indicate neither to be a sufficient source of •OH. A free-radical chain mechanism is proposed in which the HC2O4 − + •OH reaction functions as a primary propagation step, while the termination occurs through the O3 + CO2 •− reaction via an O-atom transfer mechanism. Kinetic simulations confirm that ozone reacts efficiently with the superoxide (O2 •−) ion that is produced by the reaction of O2 and CO2 •− to form •OH radical, and that the reaction of O3 + CO2 •− must be chain terminating. Oxalate is also readily oxidized by “peroxone” treatment (i.e., H2O2 and O3). However, the addition of H2O2 during the course of the sonolytic ozonation of oxalic acid does not appear to increase the observed degradation rate and decreases rates at millimolar levels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20229985</pmid><doi>10.1021/jp9115386</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2010-04, Vol.114 (14), p.4968-4980
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_733645427
source MEDLINE; American Chemical Society Journals
subjects A: Atmospheric, Environmental and Green Chemistry
Hydroxyl Radical - chemistry
Kinetics
Models, Chemical
Oxalic Acid - chemistry
Oxidation-Reduction
Ozone - chemistry
Sonication
Water - chemistry
title Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sonolytic%20Decomposition%20of%20Aqueous%20Bioxalate%20in%20the%20Presence%20of%20Ozone&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Vecitis,%20Chad%20D&rft.date=2010-04-15&rft.volume=114&rft.issue=14&rft.spage=4968&rft.epage=4980&rft.pages=4968-4980&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp9115386&rft_dat=%3Cproquest_cross%3E733645427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733645427&rft_id=info:pmid/20229985&rfr_iscdi=true