Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection
Pyocyanin is produced by Ps. aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyoc...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2010-02, Vol.77 (2), p.114-119 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 2 |
container_start_page | 114 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 77 |
creator | Sharp, Duncan Gladstone, Patience Smith, Robert B. Forsythe, Stephen Davis, James |
description | Pyocyanin is produced by
Ps.
aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented (
r
2
=
0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance
=
1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by
Ps.
aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring
Ps.
aeruginosa growth. |
doi_str_mv | 10.1016/j.bioelechem.2009.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733619087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539409001352</els_id><sourcerecordid>733619087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoVqt_Qfbmaddk082Ht1r8goIXBW8hm8y2KdukJluh_96UFnr0EDIM78y874NQQXBFMGEPq6p1AXowS1hXNcaywrzCWJyhKyK4KBtWf5_numG8bKicjNB1SiucFYQ3l2hEJGOsnjRXaDXdbGLQZun8onB-gL53C_BDrjswgwu-sE4vfEiDM-mxmOnY5l7n2ghFAp9CLLr89maGGPaGnNF9sdkFs9Pe5XEYDotu0EWn-wS3x3-Mvl6eP2dv5fzj9X02nZdmUtOhZNq2QlqrCRayZR1lTFo6AdHKztBWW6AcsnliaV0LyhknohZGYm6l5LShY3R_2JuD_WwhDWrtksnBtIewTYpTyojEgmelOChNDClF6NQmurWOO0Ww2oNWK3UCrfagFeYqY8yjd8cj23YN9jR4JJsFTwcB5Ki_DqJKxoE3YF3MPJQN7v8rf_52lpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733619087</pqid></control><display><type>article</type><title>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sharp, Duncan ; Gladstone, Patience ; Smith, Robert B. ; Forsythe, Stephen ; Davis, James</creator><creatorcontrib>Sharp, Duncan ; Gladstone, Patience ; Smith, Robert B. ; Forsythe, Stephen ; Davis, James</creatorcontrib><description>Pyocyanin is produced by
Ps.
aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented (
r
2
=
0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance
=
1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by
Ps.
aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring
Ps.
aeruginosa growth.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2009.07.008</identifier><identifier>PMID: 19666245</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acids - chemistry ; Bacterial Infections - diagnosis ; Bacterial Infections - microbiology ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Carbon - chemistry ; Carbon fibre ; Chloroform - chemistry ; Cystic Fibrosis - microbiology ; Electrochemistry ; Humans ; Infection ; Lung - microbiology ; Oxidation-Reduction ; Photometry ; Point-of-Care Systems ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - growth & development ; Pseudomonas aeruginosa - metabolism ; Pseudomonas aeruginosa - pathogenicity ; Pyocyanin ; Pyocyanine - analysis ; Pyocyanine - biosynthesis ; Smart bandage ; Time Factors</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2010-02, Vol.77 (2), p.114-119</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</citedby><cites>FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bioelechem.2009.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19666245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharp, Duncan</creatorcontrib><creatorcontrib>Gladstone, Patience</creatorcontrib><creatorcontrib>Smith, Robert B.</creatorcontrib><creatorcontrib>Forsythe, Stephen</creatorcontrib><creatorcontrib>Davis, James</creatorcontrib><title>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>Pyocyanin is produced by
Ps.
aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented (
r
2
=
0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance
=
1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by
Ps.
aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring
Ps.
aeruginosa growth.</description><subject>Acids - chemistry</subject><subject>Bacterial Infections - diagnosis</subject><subject>Bacterial Infections - microbiology</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Carbon - chemistry</subject><subject>Carbon fibre</subject><subject>Chloroform - chemistry</subject><subject>Cystic Fibrosis - microbiology</subject><subject>Electrochemistry</subject><subject>Humans</subject><subject>Infection</subject><subject>Lung - microbiology</subject><subject>Oxidation-Reduction</subject><subject>Photometry</subject><subject>Point-of-Care Systems</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - growth & development</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Pseudomonas aeruginosa - pathogenicity</subject><subject>Pyocyanin</subject><subject>Pyocyanine - analysis</subject><subject>Pyocyanine - biosynthesis</subject><subject>Smart bandage</subject><subject>Time Factors</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoVqt_Qfbmaddk082Ht1r8goIXBW8hm8y2KdukJluh_96UFnr0EDIM78y874NQQXBFMGEPq6p1AXowS1hXNcaywrzCWJyhKyK4KBtWf5_numG8bKicjNB1SiucFYQ3l2hEJGOsnjRXaDXdbGLQZun8onB-gL53C_BDrjswgwu-sE4vfEiDM-mxmOnY5l7n2ghFAp9CLLr89maGGPaGnNF9sdkFs9Pe5XEYDotu0EWn-wS3x3-Mvl6eP2dv5fzj9X02nZdmUtOhZNq2QlqrCRayZR1lTFo6AdHKztBWW6AcsnliaV0LyhknohZGYm6l5LShY3R_2JuD_WwhDWrtksnBtIewTYpTyojEgmelOChNDClF6NQmurWOO0Ww2oNWK3UCrfagFeYqY8yjd8cj23YN9jR4JJsFTwcB5Ki_DqJKxoE3YF3MPJQN7v8rf_52lpk</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Sharp, Duncan</creator><creator>Gladstone, Patience</creator><creator>Smith, Robert B.</creator><creator>Forsythe, Stephen</creator><creator>Davis, James</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</title><author>Sharp, Duncan ; Gladstone, Patience ; Smith, Robert B. ; Forsythe, Stephen ; Davis, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acids - chemistry</topic><topic>Bacterial Infections - diagnosis</topic><topic>Bacterial Infections - microbiology</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Carbon - chemistry</topic><topic>Carbon fibre</topic><topic>Chloroform - chemistry</topic><topic>Cystic Fibrosis - microbiology</topic><topic>Electrochemistry</topic><topic>Humans</topic><topic>Infection</topic><topic>Lung - microbiology</topic><topic>Oxidation-Reduction</topic><topic>Photometry</topic><topic>Point-of-Care Systems</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - growth & development</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Pseudomonas aeruginosa - pathogenicity</topic><topic>Pyocyanin</topic><topic>Pyocyanine - analysis</topic><topic>Pyocyanine - biosynthesis</topic><topic>Smart bandage</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharp, Duncan</creatorcontrib><creatorcontrib>Gladstone, Patience</creatorcontrib><creatorcontrib>Smith, Robert B.</creatorcontrib><creatorcontrib>Forsythe, Stephen</creatorcontrib><creatorcontrib>Davis, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharp, Duncan</au><au>Gladstone, Patience</au><au>Smith, Robert B.</au><au>Forsythe, Stephen</au><au>Davis, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>77</volume><issue>2</issue><spage>114</spage><epage>119</epage><pages>114-119</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>Pyocyanin is produced by
Ps.
aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented (
r
2
=
0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance
=
1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by
Ps.
aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring
Ps.
aeruginosa growth.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19666245</pmid><doi>10.1016/j.bioelechem.2009.07.008</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2010-02, Vol.77 (2), p.114-119 |
issn | 1567-5394 1878-562X |
language | eng |
recordid | cdi_proquest_miscellaneous_733619087 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acids - chemistry Bacterial Infections - diagnosis Bacterial Infections - microbiology Biosensing Techniques - instrumentation Biosensing Techniques - methods Carbon - chemistry Carbon fibre Chloroform - chemistry Cystic Fibrosis - microbiology Electrochemistry Humans Infection Lung - microbiology Oxidation-Reduction Photometry Point-of-Care Systems Pseudomonas aeruginosa Pseudomonas aeruginosa - growth & development Pseudomonas aeruginosa - metabolism Pseudomonas aeruginosa - pathogenicity Pyocyanin Pyocyanine - analysis Pyocyanine - biosynthesis Smart bandage Time Factors |
title | Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20intelligent%20infection%20diagnostics:%20Carbon%20fibre%20sensor%20for%20electrochemical%20pyocyanin%20detection&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Sharp,%20Duncan&rft.date=2010-02-01&rft.volume=77&rft.issue=2&rft.spage=114&rft.epage=119&rft.pages=114-119&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2009.07.008&rft_dat=%3Cproquest_cross%3E733619087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733619087&rft_id=info:pmid/19666245&rft_els_id=S1567539409001352&rfr_iscdi=true |