Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection

Pyocyanin is produced by Ps. aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2010-02, Vol.77 (2), p.114-119
Hauptverfasser: Sharp, Duncan, Gladstone, Patience, Smith, Robert B., Forsythe, Stephen, Davis, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 114
container_title Bioelectrochemistry (Amsterdam, Netherlands)
container_volume 77
creator Sharp, Duncan
Gladstone, Patience
Smith, Robert B.
Forsythe, Stephen
Davis, James
description Pyocyanin is produced by Ps. aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented ( r 2 = 0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance = 1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by Ps. aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring Ps. aeruginosa growth.
doi_str_mv 10.1016/j.bioelechem.2009.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733619087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539409001352</els_id><sourcerecordid>733619087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoVqt_Qfbmaddk082Ht1r8goIXBW8hm8y2KdukJluh_96UFnr0EDIM78y874NQQXBFMGEPq6p1AXowS1hXNcaywrzCWJyhKyK4KBtWf5_numG8bKicjNB1SiucFYQ3l2hEJGOsnjRXaDXdbGLQZun8onB-gL53C_BDrjswgwu-sE4vfEiDM-mxmOnY5l7n2ghFAp9CLLr89maGGPaGnNF9sdkFs9Pe5XEYDotu0EWn-wS3x3-Mvl6eP2dv5fzj9X02nZdmUtOhZNq2QlqrCRayZR1lTFo6AdHKztBWW6AcsnliaV0LyhknohZGYm6l5LShY3R_2JuD_WwhDWrtksnBtIewTYpTyojEgmelOChNDClF6NQmurWOO0Ww2oNWK3UCrfagFeYqY8yjd8cj23YN9jR4JJsFTwcB5Ki_DqJKxoE3YF3MPJQN7v8rf_52lpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733619087</pqid></control><display><type>article</type><title>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sharp, Duncan ; Gladstone, Patience ; Smith, Robert B. ; Forsythe, Stephen ; Davis, James</creator><creatorcontrib>Sharp, Duncan ; Gladstone, Patience ; Smith, Robert B. ; Forsythe, Stephen ; Davis, James</creatorcontrib><description>Pyocyanin is produced by Ps. aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented ( r 2 = 0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance = 1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by Ps. aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring Ps. aeruginosa growth.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2009.07.008</identifier><identifier>PMID: 19666245</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acids - chemistry ; Bacterial Infections - diagnosis ; Bacterial Infections - microbiology ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Carbon - chemistry ; Carbon fibre ; Chloroform - chemistry ; Cystic Fibrosis - microbiology ; Electrochemistry ; Humans ; Infection ; Lung - microbiology ; Oxidation-Reduction ; Photometry ; Point-of-Care Systems ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - growth &amp; development ; Pseudomonas aeruginosa - metabolism ; Pseudomonas aeruginosa - pathogenicity ; Pyocyanin ; Pyocyanine - analysis ; Pyocyanine - biosynthesis ; Smart bandage ; Time Factors</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2010-02, Vol.77 (2), p.114-119</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</citedby><cites>FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bioelechem.2009.07.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19666245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharp, Duncan</creatorcontrib><creatorcontrib>Gladstone, Patience</creatorcontrib><creatorcontrib>Smith, Robert B.</creatorcontrib><creatorcontrib>Forsythe, Stephen</creatorcontrib><creatorcontrib>Davis, James</creatorcontrib><title>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>Pyocyanin is produced by Ps. aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented ( r 2 = 0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance = 1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by Ps. aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring Ps. aeruginosa growth.</description><subject>Acids - chemistry</subject><subject>Bacterial Infections - diagnosis</subject><subject>Bacterial Infections - microbiology</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Carbon - chemistry</subject><subject>Carbon fibre</subject><subject>Chloroform - chemistry</subject><subject>Cystic Fibrosis - microbiology</subject><subject>Electrochemistry</subject><subject>Humans</subject><subject>Infection</subject><subject>Lung - microbiology</subject><subject>Oxidation-Reduction</subject><subject>Photometry</subject><subject>Point-of-Care Systems</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - growth &amp; development</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Pseudomonas aeruginosa - pathogenicity</subject><subject>Pyocyanin</subject><subject>Pyocyanine - analysis</subject><subject>Pyocyanine - biosynthesis</subject><subject>Smart bandage</subject><subject>Time Factors</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoVqt_Qfbmaddk082Ht1r8goIXBW8hm8y2KdukJluh_96UFnr0EDIM78y874NQQXBFMGEPq6p1AXowS1hXNcaywrzCWJyhKyK4KBtWf5_numG8bKicjNB1SiucFYQ3l2hEJGOsnjRXaDXdbGLQZun8onB-gL53C_BDrjswgwu-sE4vfEiDM-mxmOnY5l7n2ghFAp9CLLr89maGGPaGnNF9sdkFs9Pe5XEYDotu0EWn-wS3x3-Mvl6eP2dv5fzj9X02nZdmUtOhZNq2QlqrCRayZR1lTFo6AdHKztBWW6AcsnliaV0LyhknohZGYm6l5LShY3R_2JuD_WwhDWrtksnBtIewTYpTyojEgmelOChNDClF6NQmurWOO0Ww2oNWK3UCrfagFeYqY8yjd8cj23YN9jR4JJsFTwcB5Ki_DqJKxoE3YF3MPJQN7v8rf_52lpk</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Sharp, Duncan</creator><creator>Gladstone, Patience</creator><creator>Smith, Robert B.</creator><creator>Forsythe, Stephen</creator><creator>Davis, James</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</title><author>Sharp, Duncan ; Gladstone, Patience ; Smith, Robert B. ; Forsythe, Stephen ; Davis, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6adb89dda1089b6f3669d34e8b9fc3bade37e6241d322837671828c907d997353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acids - chemistry</topic><topic>Bacterial Infections - diagnosis</topic><topic>Bacterial Infections - microbiology</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Carbon - chemistry</topic><topic>Carbon fibre</topic><topic>Chloroform - chemistry</topic><topic>Cystic Fibrosis - microbiology</topic><topic>Electrochemistry</topic><topic>Humans</topic><topic>Infection</topic><topic>Lung - microbiology</topic><topic>Oxidation-Reduction</topic><topic>Photometry</topic><topic>Point-of-Care Systems</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - growth &amp; development</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Pseudomonas aeruginosa - pathogenicity</topic><topic>Pyocyanin</topic><topic>Pyocyanine - analysis</topic><topic>Pyocyanine - biosynthesis</topic><topic>Smart bandage</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharp, Duncan</creatorcontrib><creatorcontrib>Gladstone, Patience</creatorcontrib><creatorcontrib>Smith, Robert B.</creatorcontrib><creatorcontrib>Forsythe, Stephen</creatorcontrib><creatorcontrib>Davis, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharp, Duncan</au><au>Gladstone, Patience</au><au>Smith, Robert B.</au><au>Forsythe, Stephen</au><au>Davis, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>77</volume><issue>2</issue><spage>114</spage><epage>119</epage><pages>114-119</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>Pyocyanin is produced by Ps. aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented ( r 2 = 0.998) across the biomedically relevant concentration range (1–100 µM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance = 1.2 and 1.4% for 10 and 50 µM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by Ps. aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring Ps. aeruginosa growth.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19666245</pmid><doi>10.1016/j.bioelechem.2009.07.008</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-5394
ispartof Bioelectrochemistry (Amsterdam, Netherlands), 2010-02, Vol.77 (2), p.114-119
issn 1567-5394
1878-562X
language eng
recordid cdi_proquest_miscellaneous_733619087
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acids - chemistry
Bacterial Infections - diagnosis
Bacterial Infections - microbiology
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Carbon - chemistry
Carbon fibre
Chloroform - chemistry
Cystic Fibrosis - microbiology
Electrochemistry
Humans
Infection
Lung - microbiology
Oxidation-Reduction
Photometry
Point-of-Care Systems
Pseudomonas aeruginosa
Pseudomonas aeruginosa - growth & development
Pseudomonas aeruginosa - metabolism
Pseudomonas aeruginosa - pathogenicity
Pyocyanin
Pyocyanine - analysis
Pyocyanine - biosynthesis
Smart bandage
Time Factors
title Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20intelligent%20infection%20diagnostics:%20Carbon%20fibre%20sensor%20for%20electrochemical%20pyocyanin%20detection&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Sharp,%20Duncan&rft.date=2010-02-01&rft.volume=77&rft.issue=2&rft.spage=114&rft.epage=119&rft.pages=114-119&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2009.07.008&rft_dat=%3Cproquest_cross%3E733619087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733619087&rft_id=info:pmid/19666245&rft_els_id=S1567539409001352&rfr_iscdi=true